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The ability to make decisions based on data, with its inherent
uncertainties and variability, is a complex and vital skill in the
modern world. The need for such quantitative critical thinking occurs
in many different contexts, and although it is an important goal of
education, that goal is seldom being achieved. We argue that the key
element for developing this ability is repeated practice in making
decisions based on data, with feedback on those decisions. We
demonstrate a structure for providing suitable practice that can be
applied in any instructional setting that involves the acquisition of
data and relating that data to scientific models. This study reports
the results of applying that structure in an introductory physics
laboratory course. Students in an experimental condition were
repeatedly instructed to make and act on quantitative comparisons
between datasets, and between data and models, an approach
that is common to all science disciplines. These instructions were
slowly faded across the course. After the instructions had been
removed, students in the experimental condition were 12 times
more likely to spontaneously propose or make changes to improve
their experimental methods than a control group, who performed
traditional experimental activities. The students in the experi-
mental condition were also four times more likely to identify and
explain a limitation of a physical model using their data. Students
in the experimental condition also showed much more sophisti-
cated reasoning about their data. These differences between the
groups were seen to persist into a subsequent course taken the
following year.
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Acentral goal of science education is to teach students to
think critically about scientific data and models. It is crucial for

scientists, engineers, and citizens in all walks of life to be able to
critique data, to identify whether or not conclusions are supported
by evidence, and to distinguish a significant effect from random
noise and variability. There are many indications of how difficult it
is for people to master this type of thinking, as evidenced by many
societal debates. Although teaching quantitative critical thinking is a
fundamental goal of science education, particularly the laboratory
portion, the evidence indicates this is seldom, if ever, being achieved
(1–6). To address this educational need, we have analyzed the ex-
plicit cognitive processes involved in such critical thinking and then
developed an instructional design to incorporate these processes.
We argue that scientists engage in such critical thinking through

a process of repeated comparisons and decisions: comparing new
data to existing data and/or models and then deciding how to act
on those comparisons based on analysis tools that embody ap-
propriate statistical tests. Those actions typically lead to further
iterations involving improving the data and/or modifying the ex-
periment or model. In a research setting, common decisions are to
improve the quality of measurements (in terms of accuracy or
precision) to determine whether an effect is hidden by large var-
iability; to embrace, adjust, or discard a model based on the sci-
entific evidence; or to devise a new experiment to answer the
question. In other settings, such as medical policy decisions, there
may be fewer options, but corresponding decisions are made as to
the consistency of the model and the data and what conclusions
are justified by the data.

We hypothesize that much of the reason students do not en-
gage in these behaviors is because the educational environment
provides few opportunities for this process. Students ought to be
explicitly exposed to how experts engage in critical thinking in
each specific discipline, which should, in turn, expose them to the
nature of knowledge in that discipline (7). Demonstrating the
critical thinking process, of course, is insufficient for students to
use it on their own. Students need practice engaging in the critical
thinking process themselves, and this practice should be deliberate
and repeated with targeted feedback (7–9). We do not expect first-
year university students to engage in expert-level thinking pro-
cesses. We can train them to think more like scientists by simpli-
fying the expert decision tree described above. Making the critical
thinking process explicit to students, demonstrating how the pro-
cess allows the students to learn or make discoveries, and having
the students practice in a deliberate way with targeted feedback
will help students understand the nature of scientific measurement
and data uncertainty, and, in time, adopt the new ways of thinking.
The decision tree and iterative process we have described

could be provided in any setting in which data and models are
introduced to students. Virtually all instructional laboratories in
science offer such opportunities as students collect data and use
it to explore various models and systems. Such laboratories are
an ideal environment for developing students’ critical thinking,
and this environment is arguably the laboratories’ greatest value.
We have tested this instructional concept in the context of a

calculus-based introductory laboratory course in physics at a
research-intensive university. The students repeatedly and ex-
plicitly make decisions and act on comparisons between datasets
or between data and models as they work through a series of
simple, introductory physics experiments. Although this study is
in the context of a physics course, we believe the effect would be
similar using experiments from any subject that involve quanti-
tative data, opportunities to quantitatively compare data and
models, and opportunities to improve data and models. With this
simple intervention, we observed dramatic long-term improvements
in students’ quantitative critical thinking behaviors compared
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with a control group that carried out the same laboratory experi-
ments but with a structure more typical of instructional laboratories.
In our study, students in the experiment condition were ex-

plicitly instructed to (and received grades to) quantitatively
compare multiple collected datasets or a collected dataset and a
model and to decide how to act on the comparisons (Fig. 1).
Although a variety of options for acting on comparisons, as listed
above, were presented to students, striving to improve the quality
of their data were the most rigorously enforced. For example, in
one of the earliest experiments, students were told to make two
sets of measurements and compare them quantitatively. The stu-
dents were then prompted to devise a plan to improve the quality

of their measurements, to discuss this plan with other groups, and
to carry out the revised measurements and analysis. This explicit
focus on measurements, rather than improving models, was
intended to address the fact that students in a laboratory course
often assume data they collect is inherently low quality compared
with expert results (10). This perception can lead students to
ignore disagreements between measurements or to artificially
inflate uncertainties to disguise the disagreements (11). When
disagreements do arise, students often attribute them to what
they refer to as “human error” (12) or simply blame the equip-
ment being used. As such, students are unlikely to adjust or
discard an authoritative model, because they do not trust that
their data are sufficiently high quality to make such a claim. We
hypothesize that the focus on high-quality data will, over time,
encourage students to critique models without explicit support.
To compare measurements quantitatively, students were

taught a number of analysis tools used regularly by scientists in
any field. Students were also taught a framework for how to use
these tools to make decisions about how to act on the compar-
isons. For example, students were shown weighted χ2 calcula-
tions for least squares fitting of data to models and then were
given a decision tree for interpreting the outcome. If students
obtain a low χ2, they would decide whether it means their data
are in good agreement with the model or whether it means they
have overestimated their uncertainties. If students obtain a large
χ2, they would decide whether there is an issue with the model or

Fig. 1. The experimental condition engaged students in iterative cycles of
making and acting on comparisons of their data. This condition involved
comparing pairs of measurements with uncertainty or comparing datasets to
models using weighted χ2 and residual plots.
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Fig. 2. Method changes. The fraction of students proposing and/or carrying out changes to their experimental methods over time shows a large and sus-
tained difference between the experimental and control groups. This difference is substantial when students in the experimental group were prompted to
make changes (week 2) but continues even when instructions to act on the comparisons are removed (weeks 16 and 17). This difference even occurs into the
sophomore laboratory course (see Supporting Information, Analysis for statistical analyses). Note that the sophomore laboratory data represent a fraction
(one-third) of the first-year laboratory population. Uncertainty bars represent 67% confidence intervals on the total proportions of students proposing or
carrying out changes in each group each week.
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with the data. From these interpretations, the decision tree ex-
pands into deciding what to do. In both cases, students were en-
couraged to improve their data: to improve precision and decrease
their uncertainties in the case of low χ2 or to identify measurement
or systematic errors in the case of a large χ2. Although students
were told that a large χ2 might reflect an issue with the model, they
were not told what to do about it, leaving room for autonomous
decision-making. Regardless of the outcome of the comparison,
therefore, students had guidelines for how to act on the compar-
ison, typically leading to additional measurements. This naturally
led to iterative cycles of making and acting on comparisons, which
could be used for any type of comparison.
Before working with χ2 fitting and models, students were first

introduced to an index for comparing pairs of measured values
with uncertainty (the ratio of the difference between two
measured values to the uncertainty in the difference; see
Supporting Information, Quantitative Comparison Tools for
more details). Students were also taught to plot residuals (the
point-by-point difference between measured data and a model)
to visualize the comparison of data and models. Both of these
tools, and any comparison tool that includes the variability in a
measurement, lend themselves to the same decision process as the
χ2 value when identifying disagreements with models or improving
data quality. A number of standard procedural tools for de-
termining uncertainty in measurements or fit parameters were
also taught (see Supporting Information, Quantitative Compar-
ison Tools for the full list). As more tools were introduced

during the course, the explicit instructions to make or act on the
comparisons were faded (see Supporting Information, Comparison
Cycles Instruction Across the Year for more details and for a week-
by-week diagram of the fading).
The students carried out different experiments each week and

completed the analysis within the 3-h laboratory period. To
evaluate the impact of the comparison cycles, we assessed stu-
dents’ written laboratory work from three laboratory sessions
(see Supporting Information, Student Experiments Included in the
Study for a description of the experiments) from the course: one
early in the course when the experimental group had explicit
instructions to perform comparison cycles to improve data (week 2)
and two when all instruction about making and acting on
comparisons had been stopped (weeks 16 and 17). We also ex-
amined student work from a quite different laboratory course
taken by the same students in the following year. Approximately a
third of the students from the first-year laboratory course pro-
gressed into the second-year (sophomore) physics laboratory
course. This course had different instructors, experiments, and
structure. Students carried out a smaller number of more com-
plex experiments, each one completed over two weeks, with final
reports then submitted electronically. We analyzed the student
work on the third experiment in this course.

Results
Students’ written work was evaluated for evidence of acting on
comparisons, either suggesting or executing changes to measurement
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Fig. 3. Evaluating models. The fraction of students that identified and correctly interpreted disagreements between their data and a physical model shows
significant gains by the experimental group across the laboratory course (see Supporting Information, Analysis for statistical analyses). This effect is sustained
into the sophomore laboratory. Note that the sophomore laboratory students were prompted about an issue with the model, which explains the increase in
the number of students identifying the issue in the control group. Uncertainty bars represent 67% confidence intervals on the total proportions of students
identifying or interpreting the model disagreements in each group each week.
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procedures or critiquing or modifying physical models in light
of collected data. We also examined students’ reasoning about
data to further inform the results (see Supporting Information,
Interrater Reliability for interrater reliability of the coding process
for these three measures). Student performance in the experi-
mental group (n≈ 130) was compared with a control group
(n≈ 130). The control was a group of students who had taken the
course the previous year with the same set of experiments.
Analysis in Supporting Information, Participants demonstrates
that the groups were equivalent in performance on conceptual
physics diagnostic tests. Although both groups were taught sim-
ilar data analysis methods (such as weighted χ2 fitting), the
control group was neither instructed nor graded on making or
acting on cycles of quantitative comparisons. The control group
also was not introduced to plotting residuals or comparing dif-
ferences of pairs of measurements as a ratio of the combined
uncertainty. Since instructions given to the experimental group
were faded over time, the instructions given to both groups were
identical in week 16 and week 17.
We first compiled all instances where students decided to act

on comparisons by proposing and/or making changes to their
methods (Fig. 2), because this was the most explicitly structured
behavior for the experimental group. When students in the ex-
perimental group were instructed to iterate and improve their
measurements (week 2), nearly all students proposed or carried
out such changes. By the end of the course, when the instructions
had been removed, over half of the experimental group contin-
ued to make or propose changes to their data or methods. This
fraction was similar for the sophomore laboratory experiment,
where it was evident that the students were making changes, even
though we were evaluating final reports rather than laboratory

notebooks. Almost none of the control group wrote about
making changes during any of the experiments in the study.
Next, we looked for instances where students decided to act on

a comparison by critiquing the validity of a given physical model
(Fig. 3). For both groups of students, many experiments asked
them to verify the validity of a physical model. Neither group,
however, received explicit prompts to identify or explain a dis-
agreement with the model. Three experiments (week 2, week 17,
and the sophomore laboratory) were included in this portion of
the analysis, because these experiments involved physical models
that were limited or insufficient for the quality of data achievable
(Supporting Information, Student Experiments Included in the Study).
In all three experiments, students’ written work was coded for
whether they identified a disagreement between their data and the
model and whether they correctly interpreted the disagreement in
terms of the limitations of the model.
As shown in Fig. 3, few students in either group noted a dis-

agreement in week 2. As previously observed, learners tend to
defer to authoritative information (7, 10, 11). In fact, many
students in the experimental group stated that they wanted to
improve their data to get better agreement, ignoring the possi-
bility that there could be something wrong with the model.
As students progress in the course, however, dramatic changes

emerge. In week 17, over three-fourths of the students in the ex-
perimental group identified the disagreement, nearly four times
more than in the control group, and over half of the experimental
group provided the correct physical interpretation. Students in the
experimental group showed similar performance in the sopho-
more laboratory, indicating that the quantitative critical thinking
was carried forward. The laboratory instructions for the sopho-
more experiment provided students with a hint that a technical
modification to the model equation may be necessary if the fit was
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Fig. 4. Reflective comments. The distribution of the maximum reflection-comment level students reached in four different experiments (three in the first-
year course and one in the sophomore course) shows statistically significant differences between groups (see Supporting Information, Analysis for statistical
analyses). Uncertainty bars represent 67% confidence intervals on the proportions of students.
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unsatisfactory and prompted them to explain why it might be
necessary. This is probably why a larger percentage of students in
the control group identified the disagreement in this experiment
than in the week 2 and 17 experiments. However, only 10% of the
students in the control group provided the physical interpretation,
compared with 40% in the experimental group.
The more sophisticated analysis of models depends on the

repeated attempts to improve the quality of the measurements.
Students obtain both better data and greater confidence in the
quality of their data, giving them the confidence to question an
authoritative model. This is evident when we examine how stu-
dents were reasoning about their data.
We coded students’ reasoning into four levels of sophistica-

tion, somewhat analogous to Bloom’s Taxonomy (13), with the
highest level reached by a student in a given experiment being
recorded. Level 1 comments reflect the simple application of
analysis tools or comparisons without interpretation; level 2
comments analyze or interpret results; level 3 comments combine
multiple ideas or propose something new; and level 4 comments
evaluate or defend the new idea (see Supporting Information,
Reflection Analysis for additional comments and Figs. S2 and S3
for examples of this coding).
In Fig. 4, we see only a moderate difference between the

experimental and control groups in week 2, even though the
experimental group received significant behavioral support in
week 2. This suggests that the support alone is insufficient to
create significant behavioral change. By week 16, there is a
larger difference between the groups, with the control group
shifting to lower levels of comment sophistication and the
experimental group maintaining higher levels of comment so-
phistication, despite the removal of the behavioral support. In
week 17, when the model under investigation is inadequate to
explain high-quality data, the difference between the groups
becomes much more dramatic. For the experimental group, the
unexpected disagreement triggers productive, deep analysis of
the comparison beyond the level the previous week (14–16). We
attribute this primarily to attempts to correct or interpret the
disagreement. In contrast, most of the students in the control
group are reduced to simply writing about the analysis tools they
had used.
Students in the control group had primarily been analyzing

and interpreting results (level 1 and 2) but not acting on them.
Because students will continue to use strategies that have been
successful in the past (17), the students were not prepared to

manage the unexpected outcome in week 17. Our data, however,
are limited in that we only evaluate what was written in the
students’ books by the end of the laboratory session. It is plau-
sible that the students in the control group were holding high-
level discussions about the disagreement but not writing them
down. The students’ low-level written reflections are, at best,
evidence that they needed more time to achieve the outcomes of
the experimental group.
In the sophomore laboratory, the students in the experimental

group continued to show a high level in their reflective comments,
showing a sustained change in reasoning and epistemology. The
students in the control group show higher-level reflections in the
sophomore laboratory than they did in the first-year laboratory,
possibly because of the greater time given to analyze their data,
the prompt about the model failing, or the selection of these
students as physics majors. They still remained well below the level
of the experimental group, nonetheless.

Discussion
The cycles of making and deciding how to act on quantitative
comparisons gave students experience with making authentic
scientific decisions about data and models. Because students had
to ultimately decide how to proceed, the cycles provided a con-
strained experimental design space to prepare them for auton-
omous decision-making (18). With a focus on the quality of their
data and how they could improve it, the students came to believe
that they are able to test and evaluate models. This is not just an
acquisition of skills; it is an attitudinal and epistemological shift
unseen in the control group or in other studies of instructional
laboratories (11, 12). The training in how to think like an expert
inherently teaches students how experts think and, thus, how
experts generate knowledge (7).
The simple nature of the structure used here gives students both

a framework and a habit of mind that leaves them better prepared
to transfer the skills and behaviors to new contexts (19–21). This
simplicity also makes it easily generalizable to a very wide range of
instructional settings: any venue that contains opportunities to
make decisions based on comparisons.
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