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Quantitative Comparison Tools
The first type of comparison encountered in a typical introductory
physics laboratory is to compare two independently measured
values of the same physical parameter, a task that is known to be
challenging for students (3, 5, 10). In many instructional labo-
ratories, students do so by assessing whether the uncertainty
ranges defined by the measurements overlap. Scientists, however,
generally refer to a continuous scale associated with the mea-
surements’ probability distributions (22), such as the number of
units of uncertainty by which two measurements differ (so-called
1− σ, 2− σ, or 3− σ differences in physics, for example). Fol-
lowing the Guide to Uncertainty in Measurement (23), this could
be calculated as

t′= A−Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2A + δ2B

q , [S1]

where A and B are two measured values and δA and δB are their
uncertainties, respectively. As such, a large t′ score means that
the measurements differ by more than their combined uncert-
ainties, and a small t′ score means the measurements are similar
within their combined uncertainties. We use the letter t for the
index in reference to the structural similarity to the Student’s t
value, but we do not imply the index applies to the t distribution.
Interpreting the outcome of this comparison provides the

necessary structure for deciding how to act on the comparison.
For example, because overestimated uncertainties can lead to an
artificially small t′ score, a low t′ score could mean that poor
precision has hidden a small disagreement. As such, one could
choose to improve the quality of the measurements. Under a
model that predicts the two measurements should agree, a large
t′ score could mean that the model is limited or inappropriate.
One could then choose to evaluate, adjust, or discard this model.
One could also attempt to identify possible measurement errors
that are causing a systematic effect. In all of these cases, the
statistic compares the difference between measured quantities
within units of variability. Rather than specifically comparing
sample means according to the sample SDs, however, the t′ score
uses any measurement value with its uncertainty. As such, we do
not try to compare the t′ scores on the t distribution or make
inferences about probabilities. Indeed, if the measurements were
sample means from populations with the same variance, the t′
score would be equivalent to Student’s t for comparing in-
dependent samples (or, if homogeneity of variance is violated,
the t′ score would be equivalent to Welch’s t).
The χ2 equation for least-squares fitting lends itself to the

same quantitative framework defined by the weighted or reduced
χ2 statistic

χ2w =
1
N

XN
i=1

�
yi − f ðxiÞ

δyi

�2

, [S2]

where xi and yi are the measured independent and dependent
values, δyi is the uncertainty associated with each yi, N is the
number of data points, and f ðxiÞ are the model values associated
with each xi. This parameter evaluates the average difference
between measured data and a model in units of uncertainty
(squared). Values, therefore, are subject to the same interpretation
and follow-up measurements as with the t′ score (see Table S1).

Students were also taught a number of additional statistical
analysis tools. The full set of tools taught to each condition are
found in Table S2, which also specifies whether the tool informs
a comparison or is primarily procedural.

Comparison Cycles Instruction Across the Year
Students in the experimental group were given explicit in-
structions to make comparisons between their measurements
and/or models and iterate to improve their measurements.
These behaviors were also graded and present in a grading
rubric. This support was faded across the course. The explicit
instructions in the text were the first to be removed, followed by
assigned marks, and eventually instructor support was also re-
moved. A map of this fading process across the year is included
in Table S3.

Student Experiments Included in the Study
Week 2: Period of a Pendulum as a Function of Amplitude. In this
experiment, students were asked to measure the period of a
pendulum at two (experimental group, 10° and 20°) or three
(control group, 5°, 10°, and 20°) angles of amplitude and com-
pare their measurements. Students were not given a model
for the process, but most of the students believed from pre-
vious experience (high school or college-level physics class)
that the period was independent of angle according to the
equation

T = 2π

ffiffiffiffi
L
g

s
, [S3]

where L is the length of the pendulum, g is the acceleration due
to gravity, and T is the period of the pendulum. The derivation of
this equation, however, involves an approximation that

sin θ≈ θ [S4]

for small angles, θ. High-precision measurements, therefore, ex-
pose this approximation and reveal the difference in the periods
at different amplitudes from the second-order correction to this
approximation.

Week 16: Resistor–Capacitor Circuit 2. In this experiment, students
studied the voltage decay across a resistor in a parallel resistor–
capacitor (RC) circuit. This was the second experiment with this
equipment and circuit. They measured the time constant (τ) of
the voltage decay across the resistor as a function of resistance of
the resistor, which is given by the model

τ=RC. [S5]

In addition to verifying that the relationship between τ and R was
in fact linear with an intercept through the origin, students could
compare the capacitance of the capacitor with the value of the
slope from a graph of τ versus R. Resistance from other parts of
the circuit were negligible in this experiment.

Week 17: Inductor–Resistor Circuit. Using a similar measurement
procedure to the week 16 experiment, students studied the time
constant of the voltage decay (τ) across a resistor in a series
inductor–resistor (LR) circuit, which is given by the model
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τ=
L
R
. [S6]

For thismodel, the time constant as a function of resistance, plotted
as 1

τ versus resistance, would give a straight line with an intercept
through the origin. Resistance in the additional components in the
circuit, however, is nonnegligible here, resulting in a nonzero in-
tercept in the plot. Students could choose whether to perform a
one-parameter (y=mx) or two-parameter (y=mx+ b) linear fit to
their data, which would cause them to confront the issue of the
intercept. Students did not know the inductance of the inductor
and so could not make a comparison with the value from the fit.
Students could check their circuit for a finite (noninfinite) time
constant with the resistor set to zero resistance.

Sophomore Laboratory: LRC Circuit. In the LRC circuit experiment,
an inductor (L), resistor (R), and capacitor (C) are connected in
series, and the equation governing the voltage decay across the
resistor is

VR

V0
=

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1+

��
ω2 +ω2

0

��ðγωÞ�2	r , [S7]

where VR is the voltage across the resistor, V0 is the amplitude of
the input AC voltage source, ω is the angular frequency of the
voltage source, ω0 is the resonant frequency, and γ is the band-
width. Students fit their data of VR

V0
as a function of frequency, ω,

to determine the parameters ω0 and γ. Additional resistance in
the circuit beyond the resistance in the resistor, however, means
that the ratio of VR to V0 will never be exactly 1, and so it is
necessary to add a third scaling factor, A, to the model, such that

VR

Vo
=

Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1+

��
ω2 +ω2

0

��ðγωÞ�2	r . [S8]

Students also measured the parameters ω0 and γ through another
experiment and could calculate their values (using measure-
ments of the components R, L, and C) through the definition of
these parameters. As such, students had multiple comparisons to
make to inform the quality of the fit beyond the analysis of the
fit itself.

Interrater Reliability
For all of the data presented, one rater coded all items and
another rater coded ∼10% of the items. The primary coder was
never blind to condition because of the nature of the student
products. In the control group, students printed their analysis
work from spreadsheets and pasted them into their laboratory
notes, whereas the experimental group submitted their spread-
sheets electronically. The second rater, however, was given copies
that made the rater blind to condition.
Interrater-reliability analysis using Cohen’s κ statistic was

performed to evaluate consistency between raters. Values
greater than 0.6 were considered substantial agreement and so
do not suggest a need for blind coding. For the quality of re-
flective comments, the interrater reliability for the raters was
found to be κ= 0.657,P< 0.001. For identifying whether students
proposed or proposed and carried out changes to their methods
and measurements, the interrater reliability for the raters was
found to be κ= 0.714,P< 0.001. For identifying whether students
identified and/or physically interpreted the disagreements with
models, the interrater reliability for the raters was found to be
κ= 0.881,P< 0.001.

Participants
Included in the study were two cohorts (groups) of students
enrolled in the same introductory undergraduate physics course
at a research-intensive university in Canada. The control group
consisted of students enrolled in 2012/2013, whereas the exper-
imental group consisted of students enrolled in 2013/2014. The
course, both years, was spread across two semesters of eight or
nine 3-h laboratory weekly laboratory sessions. Each laboratory
session included no more than 48 students and was facilitated by
two graduate student teaching assistants and the course in-
structor. The number of students included in the analysis is found
in Table S4. The variability in the number of students each week
is attributable to students not attending all laboratories. In the
control group, 109 students conducted all three first-year labo-
ratories, and only 31 students conducted all three first-year
laboratories and the sophomore laboratory. In the experimental
group, 108 students conducted all three first-year laboratories
and only 36 students conducted all three first-year laboratories
and the sophomore laboratory. Because the effects of the labo-
ratory occurred throughout more than just the four laboratories
evaluated, we include any students who participated each par-
ticular week.
On entering the course, the two groups had statistically equivalent

pretest scores on the Force Concept Inventory (FCI) (24): control,
M = 77%, SE= 2%; experiment,M = 76%, SE= 2%, tð266Þ= 0.20,
P= 0.839. By the end of the first term, the groups had statistically
equivalent scores on the Mechanics Baseline Test (MBT) (25):
control, M = 72%, SE= 2%; experiment, M = 68%, SE= 2%,
tð288Þ= 1.21,P= 0.227. By the end of the second term, the groups
also had statistically equivalent scores on the Brief Electricity and
Magnetism Survey (BEMA) (26): control, M = 70%, SE= 2%;
experiment, M = 64%, SE= 2%, tð177Þ= 1.96,P= 0.052. These
assessments have been used to evaluate the introductory physics
students in the department for over 20 y, and, in the last decade,
students’ incoming scores have been consistent within a 2% SD.
The critical thinking behaviors assessed in this study relate

primarily to evaluating data and physical measurement systems.
The questions on the FCI, MBT, and BEMA evaluate students’
ability to apply specific physics concepts in idealized situations.
There is very little overlap between the knowledge and reasoning
required to answer those questions, and the real-world, data-
driven critical thinking about data and measurement systems
learned in the laboratory course. We also would expect that the
lecture and other components of the courses would dominant
over a possible effect related to the laboratory. Therefore, it is
not surprising that the scores are not correlated.
Students in the course both years were almost all intending to

major in a science, technology, engineering, or math field, al-
though they do not declare their majors until their second year.
The breakdown of students’ intended majors in the experimental
group by the end of the course are in Table S5. Unfortunately,
these data were unavailable for the control group. We do have
data that show that ∼15% of students in the control group and
20% of the students in the experimental group chose physics as a
major by their second year of study.

Evaluation of the Sophomore Students.We will further evaluate the
students who continued into the sophomore laboratory course to
explore whether the results seen in the sophomore laboratory are
attributable to transfer or selection effects. First, we will do a two-
by-two comparison on the end-of-first-year MBT and BEMA
scores (Table S6), comparing between students who did and did
not take the sophomore laboratory course and between the ex-
periment and control groups in the first-year course.
Overall, the students who went on to take the sophomore

physics laboratory course outperformed the students who did not
take the sophomore laboratory, as measured on both the MBT
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and the BEMA (note that, of the students in the control group,
there was no difference between students who did and did not
take the sophomore laboratory course on the BEMA). This tells
us that the students in the sophomore physics laboratories gen-
erally had a stronger conceptual physics background than the
students who did not continue in an upper-year physics laboratory
course. This is consistent with the expected selection bias of students
who choose to pursue more physics courses. Of the students who
took the sophomore physics laboratory, however, there is a non-
significant difference between the experimental and control groups
on both theMBTandBEMA.This is consistent with the overall lack
of differences on these measures between the full experiment and
control conditions in the first-year laboratory course discussed in the
previous section.
Next, we compare these two subgroups on their evaluation, it-

eration, and reflection behaviors throughout the first-year labora-
tories. The trends in the Fig. S1 A–C showing only the sophomore
students are very similar to those for the whole course (Figs. 1–3).
This suggests that the students who continued into the sophomore
course were not exceptional in their behaviors in first-year. This
further suggests that the effect seen in the sophomore laboratory
experiment are not attributable to selection effects. It remains that
the upwards shift in the control group’s reflective comments and
evaluation of the model are attributable to something inherent in
the sophomore laboratory course. Most likely these shifts can be
attributed to the prompt in the instructions to explain why there
may be extra parameters in the model. This instruction would ex-
plain a shift in the model evaluation and reflective comments but
not in iteration, as seen in the data.

Reflection Analysis
To analyze students’ reflection in the laboratory, we evaluated
students’ reflective comments associated with their statistical
data analysis and conclusions. The reflective comments were coded
using a set of four classes based on Bloom’s Taxonomy classes (13).
Fig. S2 A and B provide samples of this coding applied to student
work. The four comments levels were:

i) Application: a written reflection statement that offers the
outcome of the procedural application of data analysis tools
(e.g., The χ2 value is 2.1.) These comments were distinct
from procedural statements (e.g., then we calculated the
χ2 value).

ii) Analysis: a written reflection statement that analyzes or in-
terprets their data analysis or results (e.g., our χ2 value is
0.84, which is close to one, indicating that our model fits the
data well).

iii) Synthesis: a written reflection statement that synthesizes
multiple ideas, tool analyses, or reflections to propose a
new idea. This could include suggesting ways to improve
measurements (e.g., we will take more data in this range,
because the data are sparse) or models (e.g., our data has an
intercept so the model should have an intercept), as well as
making comparisons (e.g., the χ2 value for the y=mx fit was
43.8 but for the y=mx+ b fit χ2 was 4.17, which is much
smaller).

iv) Evaluation: a written reflection statement that evaluates,
criticizes, or judges the previous ideas presented. Evaluation
can look similar to analysis, but the distinction is that eval-
uation must follow a synthesis comment. For example, after
a synthesis that compared two different models and demon-
strated that adding an intercept lowered the χ2 value, an
evaluation could follow as, “. . .the intercept was necessary
due, most likely, to the inherent resistance within the circuit
(such as in the wires).”

Fig. S2 A and B demonstrate how the coding scheme is applied
to three excerpts from students’ books in the LR experiment

(week 17). Each of the levels build on each other, so a student
making a level 4 evaluation statement would also have made
lower level statements, although level 1 comments (application)
need not be present. Although it is important that students re-
flect on various parts of the data analysis, only the maximum
reflection level a student reached was coded. It should be noted
that the comments were not evaluated on correctness.

Analysis
For the first-year experiments, generalized linear mixed-effects
models were performed using R (27) and the linear mixed-effects
models using Eigen and S4 package (28) to analyze all three
outcome measures (proposing and/or carrying out measurement
changes, identifying and/or interpreting disagreements with
models, and levels of reflection/comments). For measurement
changes and evaluating models, logistic regression analysis was
performed because of the dichotomous nature of the outcome
variables. For the reflection data, Poisson regression was used to
account for the bounded nature of the outcome variables. All
three analyses used condition, laboratory week, and the in-
teraction between condition and laboratory week as fixed effects
and student identifier code (student ID) as a random effects
intercept. Type 3 analysis of variance (ANOVA) was performed
on the logistic regression models using the R Companion to
Applied Regression package (29) to assess the overall impact of
the variables. Sophomore laboratory data were analyzed using χ2
tests for independence of proportions.

Proposing and/or Carrying Out Measurement Changes. A logistic
regression was carried out to compare the proportion of students in
each group and across each experiment proposing and/or carrying
out changes to their measurements (Table S7). Note, for this
analysis, proposing versus proposing and carrying out changes were
collapsed to a single dichotomous variable of proposing or carrying
out changes. The logistic regression model was statistically signifi-
cant, χ2ð5Þ= 470.55,P< 0.001. A type 3 ANOVA of the logistic
regression model demonstrated that condition and the interaction
between condition and laboratory week were highly significant in
the model, but laboratory week alone was not significant.
With significant effects for the interaction, we can compare the

groups each week to explore where the significant differences
exist. To do this, we use a χ2 test of proportions comparing groups
on the distribution of the number of students who did not pro-
pose or change their measurements, who proposed changes to
their measurements, and who proposed and made changes to
their measurements (returning to the three-level, rather than
dichotomous, variable). Taking into account the multiple com-
parisons across weeks, we use a Bonferroni correct to set the
α level at 0.01. This gave statistically significant differences be-
tween groups on all four experiments: week 2, χ2ð2Þ= 270.38,
P< 0.001; week 16, χ2ð2Þ= 107.51,P< 0.001; week 17, χ2ð2Þ=
128.39,P< 0.001; sophomore laboratory, χ2ð2Þ= 17.58,P< 0.001.
This demonstrates that the experimental group outperformed
the control group on this measure on all experiments.

Evaluating Models. A logistic regression was carried out to com-
pare the proportion of students in each group and across each
experiment identifying the disagreement with the model and/or
physically interpreting the issue (Table S8). Note, for this anal-
ysis, identifying versus physically interpreting the disagreement
with the model were collapsed to a single dichotomous variable.
The logistic regression model was statistically significant, χ2ð3Þ=
171.96,P< 0.001. A type 3 ANOVA of the logistic regression
model demonstrated that condition and the interaction between
condition and laboratory week were highly significant in the
model, but laboratory week alone was not significant.
With significant effects for the interaction, we can compare the

groups each week to explore where the significant differences
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exist. To do this, we use a χ2 test of proportions comparing groups
on the distribution of the number of students who did not identify
the disagreement with a model, who did identify the disagreement,
and who identified and interpreted the disagreement. Taking into
account the multiple comparisons across weeks, we use a Bon-
ferroni correct to set the α level at 0.02. This gave significant
differences between groups on all three experiments: week 2,
χ2ð2Þ= 8.60,P= 0.014; week 17, χ2ð2Þ= 99.04,P< 0.001; sopho-
more laboratory, χ2ð2Þ= 10.32,P= 0.006.

Reflection Behaviors. A Poisson regression was carried out to
analyze the quality of the reflective comments in each group
across each experiment (Table S9). The regression model
was statistically significant, χ2ð5Þ= 109.03,P< 0.001. A type 3
ANOVA of the logistic regression model demonstrated that
condition and the interaction between condition and laboratory
week were highly significant in the model, but laboratory week
alone was not significant.
With a significant interaction, we can compare the groups each

week to explore where the significant differences exist. To do this,
we use a χ2 test of proportions comparing the distribution of the
numbers of students in each group who reached each maximum
comment level. Taking into account the multiple comparisons
across weeks, we use a Bonferroni correct to set the α level at
0.01. This gave significant differences between groups on all
three first-year experiments, but nonsignificant differences on
the sophomore-laboratory: week 2, χ2ð3Þ= 25.44,P< 0.001; week
16, χ2ð3Þ= 51.86,P< 0.0001; week 17, χ2ð3Þ= 155.83,P< 0.0001;
sophomore laboratory, χ2ð3Þ= 7.58,P= 0.056.

Time on Task in the LR Experiment
One confounding issue to the week 17 LR circuit experiment was
that students in the control group worked through a computer-
based inquiry activity at the beginning of the experiment session.
The activity taught students how to calculate the uncertainty in
the slope of a best-fitting line, which they also used to reanalyze
the previous week’s data. As such, the control group spent ap-
proximately 2 h on the LR circuit laboratory, whereas the ex-
perimental group spent 3 h. Not having enough time to reflect on
data and act on that reflection may explain the different out-
comes observed in the main text. As a precautionary measure, we
observed students in the experimental group 2 h into the labora-
tory session to evaluate what analysis they had performed by that
time. The observer recorded whether the group had by that time
produced a one-parameter mx fit or a two-parameter mx+ b fit.

The results, shown in Fig. S3, demonstrate that if the students
in the experimental group had been given the same amount of
time on task as students in the control group, more of them still
would have made the modification to the model and included an
intercept in their fit. Given additional time, however, even more
students were able to think critically about the task and make
better sense of their data. From this result, we conclude that the
effects seen in this experiment are still primarily attributable to
students’ overall improved behaviors. Indeed, the effect is much
larger because of the additional time, which is an important
feature of the intervention itself. It takes time for students to
engage deeply in a task, think critically, and solve any problems
that arise (30). Comparing between students in the experimental
group at the 2-h mark and the final 3-h mark demonstrates
the striking effect that an extra hour can make to students’
productivity.
The number of single-parameter mx fits decreased slightly

from the 2-h observations and the final submitted materials for
the experimental group. This could have occurred if students
recognized that the mx fit was not helpful in understanding their
data, because of the additional intercept required. This is in-
teresting to note in light of the limitations of the analysis
methods used in this study. Analyzing laboratory books can only
keep track of recorded activity and many behaviors may have
occurred without record. The result that some students created
additional fits and then did not submit them at the end of the
laboratory period demonstrates that students in the experimental
group still may have engaged in additional reflective and iterative
behaviors beyond what was recorded. Differences between the
control and experimental groups, then, are unlikely attributable to
students in the experimental group simply recording more while
engaging in the same behaviors as students in the control group.
The slope uncertainty activity provided to the students in the

control group just before the LR circuit laboratory may, however,
have narrowed the focus of students’ analysis. That is, the activity
first introduced students to the uncertainty in the slope of a one-
parameter best fitting line (that is, with the intercept fixed at the
origin). As such, it could be argued that these students were
more likely to fix the intercept at the origin so that they could
apply the learned formula. The activity, however, also included a
follow-up task that introduced the uncertainty in the slope of a
two-parameter best fitting line (intercept not fixed), and so
students did have access to both options. Students also could
have used their analysis to identify the issue even if they did not
change their fit.
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Fig. S1. Evaluating the sophomore laboratory students. A–C show the measures in the core of the analysis including only the students who moved into the
sophomore-level physics course. The data are very similar to the class as a whole, demonstrating that the students in the sophomore laboratory are repre-
sentative of the full first-year class on these measures. (A) Proposing and/or carrying out changes to their experimental methods. (B) Identifying and inter-
preting model disagreements. (C) Maximum reflection comment level reached.
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A

B

Fig. S2. Two students’ reflections during an experiment provide examples of the reflection coding scheme. (A) The student makes a level 1 comment about
applying χ2 to the student’s experiment and then shows that this value is high (level 2). A level 3 statement describes considering a different model, and then
the student finally evaluates the new model by describing the much lower χ2 value. (B) The students starts with a level 1 comment about χ2 and the inductance
and then analyzes the fit line compared with the model (level 2). The student then comments on χ2 being small, attributing it to large uncertainties (level 3).
The student justifies the uncertainty as attributable to limitations of the measurement equipment (level 4). Finally the student provides further suggestions for
improvement (additional level 3).
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Fig. S3. The distribution of graphical analyses made by students by the end of the LR circuits laboratory in the control and experimental groups and within the
first 2 h of the laboratory for the experimental group. Uncertainty bars represent 67% confidence intervals on the proportions. The bars are larger for the
“Experiment-2hour mark,” because only groups, rather than individuals, were assessed. Bars in each group may add to more than 1, because students may
have analyzed either or both fits.

Table S1. Interpretations of and follow-up behaviors from comparisons

t′ score
Interpretation of
measurements Follow-up investigation χ2

0< jt′j<1 Unlikely different, uncertainty
may be overestimated

Improve measurements,
reduce uncertainty

0< χ2 <1

1< jt′j<3 Unclear whether different Improve measurements,
reduce uncertainty

1< χ2 <9

3< jt′j Likely different Improve measurements, correct
systematic errors, evaluate model
limitations or approximations

9< χ2

t′ score comparisons are between pairs of measurements and χ2 comparisons are between datasets and models.

Table S2. Statistical tools taught to students in each condition

Comparison tools Procedural tools

Control and experiment condition Experiment condition only Control and experiment condition

Overlapping uncertainty ranges t′ score Histograms
Unweighted χ2 Residual plots Mean
Weighted χ2 SD

Standard uncertainty in the mean (SE)
Semilog and log–log plots
Weighted average
Uncertainty in fit parameters of fit lines

The statistical tools taught to students in each condition are specified by whether they are procedural or
inform the comparison cycles.

Table S3. Support given to experimental condition to make and act on comparisons

Support

Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Compare: instructions X X X X X X X
Compare: marking X X X X X X X X X X X
Iterate: instructions X X X
Iterate: marking X X X X

The experimental group received explicit support to make and act on comparisons. The support came in
the form of explicit instructions and/or reference in the marking scheme and was faded over time. In the
table, an X indicates that the behavior (comparing or iterating) was supported that week.
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Table S4. Sample sizes on each measure in the study between
groups and experiments

Group Week 2 Week 16 Week 17 Sophomore laboratory

Control 146 132 131 39
Experiment 159 138 133 48

Table S5. Students in the experimental group who have
declared a variety of STEM majors

Intended Major Experimental group, %

Physics or astronomy 14
Life sciences 13
Engineering physics 7
Non-STEM 2
Computer science 1
Chemistry 1
Other STEM or undecided 62

STEM, science, technology, engineering, and mathematics.

Table S6. Evaluating students who went into the sophomore physics laboratory

Group

Sophomore Laboratory Comparisons

Took
laboratory, %

Did not take
laboratory, %

Took laboratory vs. did not
take laboratory

Experimental vs.
control group

MBT
Control Group 77 (12) 70 (16) t(76.6) = 2.46; P = 0.016*
Experimental Group 75 (17) 66 (16) t(80.6) = 2.81; P = 0.006**
Took laboratory t(71.2) = 0.59; P = 0.556

BEMA
Control Group 74 (9) 65 (20) t(34.8) = 1.85; P = 0.073
Experimental Group 68 (16) 61 (16) t(70.8) = 2.06; P = 0.04*
Took laboratory t(44.3) = 1.71; P = 0.094

Students from the first year course (both from the control and experimental conditions) who did and did not take the sophomore
laboratory are compared on MBT and BEMA diagnostics. Numbers are mean percentage on the test with SD in parentheses. *P < 0.05;
**P < 0.01.

Table S7. Analysis of students’ iteration behaviors

Model coefficients and variables Estimate SE Wald z df χ2 P

Model coefficients
Condition = Experiment 7.97 0.94 8.49 <0.0001***
Week = Week 16 −0.82 0.86 −0.96 0.336
Week = Week 17 −0.41 0.75 −0.55 0.582
[Condition = experiment] × [week = week 16] −2.64 1.03 −2.56 0.010**
[Condition = experiment] × [week = week 17] −2.54 0.93 −2.72 0.007**

Model variables
Condition 1 83.02 <0.001***
Week 2 28.99 <0.001***
Condition × week 2 9.28 0.01*

Analysis used logistic regression to compare the control and experimental groups across four experiments,
three in the first-year course and one in the sophomore course. *P < 0.05; **P < 0.01; ***P < 0.001.
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Table S8. Analysis of how students evaluated models

Model coefficients and variables Estimate SE Wald z df χ2 P

Model coefficients
Condition = experiment −0.83 0.33 −2.55 0.011*
Week = week 17 −0.27 0.30 −0.88 0.379
[Condition = experiment] × [week = week 17] 3.60 0.60 5.97 <0.001***

Model variables
Condition 1 6.49 0.011*
Week 1 0.77 0.379
Condition × week 1 35.62 <0.001***

Analysis used logistic regression to compare the control and experimental groups across three experiments,
two in the first-year course and one in the sophomore course. *P < 0.05; ***P < 0.001.

Table S9. Analysis of students’ reflection behaviors

Model coefficients and variables Estimate SE Wald z df χ2 P

Model coefficients
Condition = experiment 0.13 0.07 1.89 0.059
Week = week 16 −0.29 0.08 −3.48 <0.001***
Week = week 17 −0.40 0.09 −4.59 <0.001***
[Condition = experiment] × [week = week 16] 0.17 0.11 1.52 0.130
[Condition = experiment] × [week = week 17] 0.58 0.11 5.29 <0.001***

Model variables
Condition 1 3.57 0.059
Week 2 24.48 <0.001***
Condition × week 2 28.55 <0.001***

Analysis used regression to compare the control and experimental groups across four experiments, three in
the first-year course and one in the sophomore course. ***P < 0.001.
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