
CHAPTER 14 
 
14.1 Simple Harmonic Motion - The first part has basic definitions 
you need. Read the second part carefully and be sure you understand 
how the equations and the graphs relate. Try to do the examples 
yourself without looking at the solution. 
 
----------------------------------------------------------------------------- 
14.1 Q1.  The starting conditions of an oscillator are characterized by 
 
1. the initial acceleration. 
2. the phase constant.  
3. the phase angle.  
4. the frequency. 
 
Feedback: review p. 415-417. The phase constant is included to 
describe an oscillator's initial conditions, as all oscillations do not 
necessarily have the same starting point. 
 
 
 
14.1 Q2.   An object undergoing simple harmonic motion has its 
maximum speed when  
(hint: see Fig. 14.3) 
 
1. the object passes through x = 0. 
2. the object is at its maximum amplitude (x = A). 
3. the object is at 1/2 its amplitude (x = A/2). 
4. you cannot determine without knowing the initial phase constant of 
the object.  
 
Comment: review p. 412-413, in Fig 14.3, the relationship between an 
object's position and velocity are shown. At the maximum amplitude, 
the object turns around, and thus must go through v = 0 m/s. The 
object is the fastest exactly in between the amplitudes, i.e., when 
passing thorough x = 0. 
----------------------------------------------------------------------------- 
 
 
 
 
 
  



14.2 Simple Harmonic Motion and Circular Motion - This section 
uses rotational variables that we will discuss in class on Monday. 
Equations 14.15 hopefully make sense to you. Appreciate that you 
need a 'phase constant' to express initial condition at t = 0, since 
velocity and position are not necessarily 0. Example 14.4 is a typical 
exam or homework question. 
 
-----------------------------------------------------------------------------	  
14.2 Q1.   Looking at the figure for the "Stop to Think 14.2", what is 
the phase constant, ϕ_0, of the block in part (a)?  
Hint: Look at Figure 14.9 for help with determining +/-. 
 
1. 3pi/4 
2. -pi/4 
3. pi/4 
4. -3pi/4 
 
Feedback: review p.415-416. The object is located at the 3pi/4 
position in the figure, and is negative since the block is moving 
towards x = 0. 
----------------------------------------------------------------------------- 
 
 
 
 
 
 
  



14.3 Energy in Simple Harmonic Motion - Read the entire section 
carefully. Think about the spring demo in today's class -- where is the 
velocity zero and where is it max -- and relate that to kinetic energy. 
Remember that energy is ALWAYS conserved; so what happens to the 
kinetic energy when the velocity is zero?  
Figure 14.10 has a lot of information in it -- take your time to review 
all the components and try to understand how amplitude (or any x-
position), and potential energy relate. 
----------------------------------------------------------------------------- 
14.3 Q1.   An object moves with simple harmonic motion. If the 
amplitude and the period are both doubled, the object’s maximum 
speed is 
 
1. quadrupled.  
2. doubled.  
3. quartered.  
4. halved. 
5. unchanged. 
 
Feedback: review p. 418. We know that v_max =  ωA.  We can also 
write  ω = 2pi/T, so v_max =  (2pi/T)A. If we double A and T, v_max 
will not change. 
 
 
 
14.3 Q2.   Which statement is INCORRECT about energy in a simple 
harmonic oscillator, such as a mass oscillating on a spring like in Fig. 
14.10.  
1. The potential energy of the system is half the total energy at 
x = A/2. 
2. The potential energy of the system is equal to the total energy 
minus the kinetic energy, U = E-1/2mv^2. 
3. At position x=0 the total energy is equal to the kinetic energy, E = 
K = 1/2 mv^2. 
4. At position x=A the total energy is equal to the potential energy, E 
= U = 1/2 kx^2. 
5. The total energy, E, at position x=A and x= A/2 is the same. 
 
Feedback: review p. 418-419. Although at some critical points the 
total energy might be all kinetic (at x=0) or all potential (at x = A or x 
= -A), the total energy, E, of the system is always written as K + U. 
Also, note that the graph of the potential and kinetic energies is NOT 
linear but rather goes by the power of ^2 (parabolic). 
----------------------------------------------------------------------------- 



14.4 The Dynamics of Simple Harmonic Motion – We will be 
looking at Hooke's Law in class and it would be beneficial for you to 
review this section (if you are unfamiliar with Hooke's Law, you might 
want to skim through section 10.4 as well). It is important to 
recognize the equivalency of F = ma and F =-kx. The worked-through 
examples in this part are good practice; be sure to try and understand 
these. 
 
----------------------------------------------------------------------------- 
14.4  Q1.  An object undergoing simple harmonic motion has its 
maximum acceleration when  
(hint: see Fig. 14.13) 
 
 1. the object is at its maximum negative amplitude (x = -A).  
 2. when the object passes through x = 0. 
 3. the object is at its maximum amplitude (x = A). 
 4. you cannot determine without knowing the initial phase constant of 
the object.  
 
Feedback: review p. 420-421. The acceleration is largest when the 
v=0 and the object needs to accelerate towards x = 0. Think about 
when does the acceleration OPPOSE the movement, i.e., go in the 
opposite direction as the object's movement. Mathematically we also 
known that the acceleration is the second derivative of position, a = 
x''(t). 
 
 
14.4 Q2.   A block (0.2 kg) attached to a horizontal spring is 
pulled 20 cm and released. Which statement is NOT true about the 
energy in the system just BEFORE the block is released? 
 
1. If given the spring constant k = 10 N/m, it would be possible to 
solve for the maximum velocity of this block. 
2. At the displacement maxima, all the energy is stored as 
potential energy due to gravity, so E_total = U = mgh. 
3. At the displacement maxima, all the energy is stored as 
potential energy of the spring, so E_total = U = 1/2kA^2. 
4. E_total ALWAYS equals K + U, and at the maxima K = 0. 
 
Feedback: review p. 418-419. The potential energy comes from the 
spring in this case -- NOT from gravity. 
  
 
 



14.4 Q3.   Looking at the Stop and Think 14.3, four springs have been 
compressed from their equilibrium position at x = 0 cm. When 
released, they will start to oscillate.  
 
Rank the oscillation frequency, ω, in order from highest to lowest.  
1. a > b = c > d 
2. b > a > c > d 
3. c > b > a = d  
4. c > d = b > a 
5. c > b > d > a 
6. d > c > a > b 
 
Feedback: review p. 418-419. Use the formula ω = sqrt(k/m) to solve 
for the four oscillation frequencies. 
 
 
 
14.4 Q4.   Looking at the Stop and Think 14.3, … (same as above) … 
Rank the period, T, in order from highest to lowest.  
1. b > a > c > d 
2. d > c > a > b 
3. c > d = b > a 
4. c > b > a = d  
5. a > b = c > d 
6. c > b > d > a 
 
Feedback: review p. 418-419. Use the formula T = 2pi/ω  to solve for 
the four periods. Or use equation 14.24 
 
 
 
14.4 Q5.   Looking at the Stop and Think 14.3, … (same as above) … 
Rank the potential energy, U, in order from Rank the potential 
energy, U, in order from highest to lowest 
1. b > a > c > d 
2. d > c > a > b 
3. c > d = b > a 
4. c > b > a > d  
5. a > b = c > d 
 
review p. 418-419. Use the formula U = 1/2 kA^2. This calculates the 
maximum potential energy, which can be used to determine the 
maximum speed because 1/2 kA^2 = 1/2m(v_max)^2. 
----------------------------------------------------------------------------- 



14.5 - Vertical Oscillations: This section shows why gravity does 
NOT influence the oscillation frequency. Example 14.7 is very useful. 
Make sure you can identify the equilibrium position of a vertical spring 
AND a vertical spring with a mass attached. What extra features are 
included in a vertical harmonic oscillator that are not considered in a 
horizontal harmonic oscillator? 
 
----------------------------------------------------------------------------- 
14.5 Q1.   A 1.5 kg mass is attached to the end of a 10.0 cm long 
spring that is hanging from the ceiling. The weight of the mass 
stretches the spring to a length of 13.5 cm. If you pull the mass down 
and stretch the spring to 15.0 cm and then release it, what’s the 
equation describing the position of the mass as a function of time?  
 
1. x(t) = 5cm cos(ωt) 
2. x(t) = 15.0cm cos(ωt) 
3. x(t) = 1.5cm cos(ωt) 
4. x(t) = 13.5cm cos(ωt) 
5. x(t) = 10cm cos(ωt) 
 
Feedback: review p. 423-424. The mass oscillates around the 
equilibrium position, which is at 13.5 cm. It's amplitude is the 
difference between 15.0 -13.5 cm. 
----------------------------------------------------------------------------- 
 
 
 
 
  



14.6 - The Pendulum: Just read the first two pages and the 'tactics 
box 14.1'. Most important in this section are the expressions for period 
and angular frequency and examples 14.8 and 14.9.  
Skip “The Physical Pendulum" section. 
 
----------------------------------------------------------------------------- 
14.6 Q1.   As a pendulum swings through its cycle, at the bottom of 
the swing the mass is ...  
1. moving its fastest and has its least (or zero) acceleration. 
2. moving its slowest and has its greatest acceleration. 
3. moving its slowest and has its least (or zero) acceleration. 
4. moving its fastest and has its greatest acceleration. 
review p. 425-426. The pendulum motion is simple harmonic, so the 
maximum velocity is at the equilibrium position -- or in the pendulum 
at the bottom of the swing. When the velocity is at its max, the 
acceleration is at zero -- where is the acceleration at its max? 
 
 
14.6 Q2.   You are watching your identical twin cousins, Bob and Peter, 
swinging on a swing together. You use the timer in your cell phone to 
determine their oscillation period to be 2.0 s. Then Peter gets off. With 
only Bob (1 child) swinging, what is the period? 
1. 4.0 s.  
2. >2.0 s but not necessarily 4.0 s. 
3. 2.0 s 
4. <2.0 s but not necessarily 1.0 s. 
5. 1.0 s 
6. Cannot determine without knowing the length of the swing. 
Feedback: review p426 -- see equation 14.49. Is there a mass term in 
the equation for a pendulum? 
 
 
14.6 Q3.   In the past, the swinging weight in a pendulum of a 
grandfather clock was made entirely of brass. Brass expands when the 
temperature rises. On a hot day the clock would be ... 
**SOME COMPLAINTS ABOUT WORDING !!! 
1. too fast. 
2. too slow. 
3. close enough to the same that one must not compensate for it. 
Feedback: review p.426, particularly eq.14.49. If the length increases 
then so, too, will the period, thus each swing will take longer and the 
time will run slower. You can read about the compensation for thermal 
expansion on wikipedia here: 
http://en.wikipedia.org/wiki/Pendulum_clock#Thermal_compensation  



14.7 Damped Oscillations: Read this section carefully. Think about 
how the loss of energy is responsible for a DECREASE in the 
AMPLITUDE (and energy), but it has NO EFFECT on the FREQUENCY. 
Compare this idea to Figure 14.23; try to explain what the envelope of 
the amplitude is in your own words. Look carefully at equations 14.56 
and 14.58 showing the equations underlying Fig. 14.23 and Fig. 14.24. 
Carefully look at “Energy in Damped Systems”. Make sure you 
understand the definition of the time constant, i.e., how the time 
constant relates to the amount of energy in a system AND the 
maximum displacement (amplitude). Look at Fig. 14.25 and work 
through the Example 14.11 “A damped pendulum”. 
----------------------------------------------------------------------------- 
14.7 Q1.   READ THIS QUESTION CAREFULLY: 
For non-ideal oscillators (such as a real pendulum) energy is lost and 
the amplitude (which is the maximum displacement) is no longer 
constant but also decreases with time.  
The energy loss is described by a TIME CONSTANT, τ. This time 
constant measures the 'characteristic time' during which the energy in 
an oscillation is dissipated; see Fig. 14.25.  
Typically after ONE time constant has elapsed, the system has ... 
1. LOST half of its initial energy. 
2. LOST 63% of its initial energy. 
3. LOST 37% of its initial energy. 
4. LOST 13% of its initial energy. 
5. lost NO energy. 
Feedback: review p. 430. After one complete time constant, the 
energy in the system is 37% of the initial energy, or in other words, 
the system has LOST 63% of its initial energy. 
 
 
14.7 Q2.    Which of the following statements, if any, is FALSE about a 
damped oscillator? 
1. The equation for a damped oscillator is the same as for an (undamped) 
harmonic oscillator BUT with an added exponential decay function e^(-
bt/2m) to account for the damping. 
2. Energy is always conserved when there is no damping.  
3. A larger damping constant, b, causes the oscillations to damp more 
quickly. 
4. decreasing the damping constant, b, will make the oscillations last longer.  
5. Light damping, (b/2m << ω0), does not greatly affect the system's 
oscillation frequency, ω. 
6. ALL of the statements are TRUE. 
 
Feedback: review p. 428-429. All the statements are there. Also look 
at the frequency in Fig. 14.23 -- does it change over time.  



14.8 Driven Oscillations and Resonance – There is no math but 
the concept is important. Try to explain the collapse of the Tacoma 
Narrows Bridge in the video using the concepts of this section. 
 
-----------------------------------------------------------------------------
14.8 Q1.   Chose ALL ANSWERS that CORRECTLY describe a driven 
oscillator?  
(consider the oscillator to be perfect, i.e., no damping). 
 
1. The driving frequency is completely dependent of the oscillator's 
natural frequency.  
2. The driving frequency is completely independent of the 
oscillator's natural frequency.  
3. The amplitude does not increase (much) if the driving 
frequency is very different from the natural frequency of the 
oscillator.  
4. The amplitude does not increase (much) if the driving frequency 
matches the natural frequency of the oscillator.  
5. The amplitude increases substantially if the driving frequency is 
very different from the natural frequency of the oscillator.  
6. The amplitude increases substantially if the driving 
frequency matches the natural frequency of the oscillator.  
 
Feedback: review p. 432. Only the frequency-matching system builds 
up amplitude. If we think of a child on a swing, every time we push 
the child, the amplitude of their swing increases -- as long as we push 
them when the child is at the top of their swing. These pushes add up 
to a large (and fun) swing ride for the child. Note, this push is 
EXTERNAL from the oscillating system (the child). I could push them at 
any time I want, but only at one particular time (or position) will I be 
able to increase the swing amplitude. 
-----------------------------------------------------------------------------	  


