
Physics of Materials, PHYS315, Vladimir Hinkov (University of British Columbia).

Problem set 4, due on November 17, before the beginning of the lecture

1 Diffraction from a three-dimensional lattice (14 points)

Consider a three-dimensional lattice with primitive vectors a1, a2, a3, where a1 = 0.5 nm,
a2 = 1 nm and a3 = 1.5 nm, and the angle between a1 and a2 is 120◦, while the other two angles
are 90◦.

a) Determine the distance between nearest planes of the family of lattice planes with the
Miller indices (3, 2, 1). Hint: Recapitulate the definition of the Miller indices in the lecture and
the correspondence between a family of lattice planes and a particular reciprocal lattice vector...

b) When performing a Bragg-scattering experiment using Cu-Kα radiation with a wavelength
of λ = 0.154 nm, what is the smallest scattering angle 2θ under which Bragg scattering from
this family of lattice planes will be observed (i.e. first order scattering, n = 1 in the Bragg
formula)?

2 Harmonic quantum oscillator (no points, is just intended for those interested as a
supplement to the prereading due on this Thursday.)

One of the few exactly solvable problems in quantum mechanics is the harmonic oscillator. In
analogy to the classical problem, in one dimension it is defined by the Hamiltonian

H =
1

2m
P 2 +

1

2
mω2Q2, (1)

where P and Q are the momentum and position operators, respectively, m is the particle mass
and ω =

√
K/m, K corresponding to the spring constant. Although quite simple, it is of

paramount importance: There are many processes in physics which – to a good approximation –
can be treated as harmonic. Apparently, the quantum oscillator model is a good starting point for
the description of explicitly mechanical (quantization of vibrational modes in solids, “phonons”)
systems. As it turns out, also seemingly unrelated phenomena, such as the quantization of the
radiation field (“photons”), can be modeled based on this formalism. In this exercise, we will
discuss the basic features of the harmonic quantum oscillator to support the results we used in
the lecture, like the “ladder” structure of the energy levels E = (1/2+n)h̄ω(k) for the vibrational
modes associated with k in a crystalline solid.

a) We introduce the new operators

Q̂ =

√
mω

h̄
Q, P̂ =

1√
mh̄ω

P (2)

The operators P and Q have the dimensions kg m/s and m, respectively. Show that P̂ and Q̂
are dimensionless and rewrite the Hamiltonian in the form H = h̄ωĤ, where Ĥ depends on Q̂
and P̂ .

An important concept for operators in quantum mechanics is related to the question whether
it matters in which order two distinct operators A and B are applied on a wave function: If
A(B|ψ〉) = B(A|ψ〉), they are said to “commute”, and the “commutator” [A,B] = AB −BA is
zero. This concept is closely related to Heisenberg’s uncertainty principle: If two operators do
not commute, then the physical quantities they represent cannot be measured simultaneously
with arbitrary precision. The best-known example is ∆Q ·∆P ≥ h̄/2.

Calculate [Q,P ] in one dimension in the position-space representation, in which Q = x and
P = (h̄/i)d/dx. Hint: What is [Q,P ]ψ(x) for an arbitrary wave function ψ(x)? Do Q and P
thus commute?
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Calculate [Q̂, P̂ ].
b) It is convenient to introduce the operators a, a† and N :

a =
1√
2

(Q̂+ iP̂ ), a† =
1√
2

(Q̂− iP̂ ) (3)

Calculate the commutator [a, a†].
While Q̂ and P̂ are hermitian1, this is not correct for a† and a: a† 6= a. It follows, that a and

a† are no physical observables, i.e. they do not represent physically measurable quantities. Show
that on the other hand the occupation number operator N = a†a is hermitian. It is indeed an
observable and represents a physically measurable quantity, as will be seen in c). Hint: Use the
generally valid relation: (AB)† = B†A†.

Rewrite Ĥ in terms of a†, a and constants only. Rewrite Ĥ in terms of N and constants only.
c) In quantum mechanics, the eigenvectors of an observable form a basis of the Hilbert space

of all possible wave functions, and the corresponding eigenvalues are real. With the results from
b), show that the spectrum of the Hamiltonian H, i.e. the set of all possible eigenvalues, can be
written in terms of the eigenvalues n of N : En = h̄ω(n + 1

2), where N |n〉 = n|n〉 and n is the
eigenvalue corresponding to an eigenvector |n〉. It can be shown that

n ≥ 0, a|0〉 = 0, Na|n〉 = (n− 1)a|n〉 if n > 0 and Na†|n〉 = (n+ 1)a†|n〉 (4)

where |0〉 is the ground state and |n〉 is the n-th excited state. (You can prove the relations
(4) as an optional exercise for 2 points). Why are therefore a and a† called lowering and
raising operator, respectively, or generally ladder operators? Show that the eigenvalues of N
are n = 0, 1, 2 . . . Hint: The assumption of an non-integer n leads to a contradiction with (4).
Apply the ladder operators and draw a sketch of the “ladder”.

Which physical quantity does therefore the hermitian operator N represent?
d) Now the eigenvectors can be obtained from |0〉 by the successive application of a†:

|n〉 =
1√
n!

(a†)n|0〉 (5)

Apart from a phase factor, in real-space representation |0〉 can be written as:

〈x|0〉 = φ0(x) =
(mω
πh̄

)1/4
exp

(
−mω

2h̄
x2
)

(6)

Use (5) to calculate φ1 and φ2. (Hint: Exploit the real-space representation of the momentum
and position operators to obtain the real-space representation of a†.) Sketch φ0, φ1, φ2 and |φ0|2,
|φ1|2, |φ2|2. Without further calculation, the expectation values 〈Q〉 and 〈P 〉 are immediately
evident. Is this in analogy to the classical harmonic oscillator? In other words, compare 〈Q〉 and
〈P 〉 with the time-averaged position and momentum of a classical oscillator whose equilibrium
position is at the origin.

Instead of comparing the averaged position, one can also have a look at the detailed probability
distribution of finding the particle at a given x in the quantum-mechanical and classical case.
Is there a difference between the QM and the classical case (no detailed calculation is required
– a sketch and clever reasoning is enough).

1The operation A† is called hermitian conjugation – it is the generalization of the complex conjugation of complex
numbers to operators. In general, the hermitian conjugate A† does not need to be equal to the original operator
A. If it does, the operator is called a hermitian operator. You can, for instance, read the Wikipedia article
http://en.wikipedia.org/wiki/Bra-ket notation to gain further insight.
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