Problem set 3, due on October 27, **before** the beginning of the lecture

1 Order parameter of a nematic liquid crystal (group exercise, 15 points)

As discussed in class, the order parameter η is a physical quantity reflecting the degree of order of a given system; it is $\eta = 0$ for full disorder and $\eta = 1$ when the system is fully ordered. One possible way to define an order parameter for a nematic liquid crystal is the following:

$$\eta = \langle \frac{3\cos^2\theta - 1}{2} \rangle \tag{1}$$

where

$$\langle f(\theta) \rangle = \int_{\theta=0}^{\pi} f(\theta) p(\theta) \sin(\theta) d\theta$$
 (2)

is the expectation value of $f(\theta)$, i.e. the average value of $f(\theta)$ over all molecules, $p(\theta)$ is the probability density of finding a molecule at an angle θ from the director orientation (Fig. 1) and the factor $\sin(\theta)$ is because we are working in spherical coordinates.

a) Using the above formulas, show that for an isotropic distribution, i.e. $p(\theta) = 1$, $\eta = 0$, as expected.

b) Show that for the case of perfect orientation of all molecules along the director, $\eta = 1$. (Hint: One could in principle use the formula (2), however one would need to deal with the delta-function, $\delta(\theta)$; there is much simpler way: what is the expectation value in (1) if θ is fixed for all molecules?) What is η in the case of all molecules distributed in a plane perpendicular to the director?

c) In an ordered magnet the value of its order parameter (macroscopic magnetization) changes by a factor of -1 when rotated through 180°. Why does the liquid crystal not exhibit a macroscopic polarization, although individual molecules can have a permanent dipole moment? It follows that the Gibbs free energy function $G(\eta, T)$ cannot be symmetric with respect to η and we include an odd power in the series expansion:

$$G(\eta, T) = a(T - T^*)\eta^2 - C\eta^3 + B\eta^4$$
(3)

where a, C and B are positive parameters and T^* is a characteristic temperature of the system, which we will show to be related to the nematic transition temperature T_{nem} but not identical

Figure 1: The deviation of the orientation of each individual molecule from the director orientation is θ . θ will fluctuate with time but we assume that a "snapshot" at a given time will yield a representative distribution of different θ angles.

Figure 2: Comparison of the behavior of second order, (a), and first order, (b), phase transitions. The dependence of the Gibbs free energy G on the order parameter η is shown. In the case of a second order phase transition, the total minimum is *either* at $\eta = 0$ or at finite η , and the order parameter sets in gradually below the transition temperature. In the case of a first order phase transition, at the transition temperature, there is the same minimum at $\eta_0 = 0$ and at a finite η_1 (i.e. $G(\eta_0) = G(\eta_1)$) while the minimum is at $\eta = 0$ above the transition temperature and at finite η below. Consequently, the order parameter will jump from $\eta = 0$ to η_1 at the transition temperature.

with it. To get an idea of the behavior at temperatures far above and far below the transition temperature, plot G for $a(T - T^*) = B = C = 1$ and $-a(T - T^*) = B = C = 1$, respectively (you can use a computer program if you want).

Here we want to show that the description of a nematic liquid crystal by eq. (3) results in a first order transition. The relevant properties of a first-order phase transition become apparent from Fig. 2: In particular, at the transition temperature T_{nem} there are two minima, at $\eta = \eta_0 = 0$ and $\eta_1 \neq 0$, with $G(\eta_0) = G(\eta_1)$.

This leads to two equations which must simultaneously hold at T_{nem} : $dG/d\eta = 0$ and G = 0. Write down these equations. Show that $\eta = 0$ is a common solution. Show that there is a second solution, $\eta = C/2B$. Which is the corresponding temperature, i.e. at which $T = T_{\text{nem}}$ does $\eta = C/2B$ solve both $dG/d\eta = 0$ and G = 0? Hint: You have two equations $dG/d\eta = 0$ and G = 0, and two variables...

Finally, calculate how η depends on T for $T < T_{\text{nem}}$.

2 Thermodynamic finger exercise (10 points)

a) In class we defined the specific heat at constant volume, c_V , through the internal energy U, and at constant pressure, c_p , through the enthalpy H. Express c_V through the free energy F and c_p through the Gibb's free energy G.

b) Derive a general expression for the entropy S at fixed p from the differential form of the Gibb's free energy dG given in class. We modeled the special case of a second-order phase transition by the following Gibb's free energy

$$G = G_0 + a(T - T_c)\eta^2 + B\eta^4$$
(4)

and derived an expression for η which minimizes G. What is then the minimal G above and below T_c , respectively? From the expressions for this minimal G, derive S above and below T_c . Derive expressions for c_p below and above T_c . Sketch how G, S and c_p behave across T_c (smooth? Is there a jump or a kink?) Physics of Materials, PHYS315, Vladimir Hinkov (University of British Columbia).

3 Bravais lattices in two dimensions (11 points)

Here we want to review different lattices in two dimensions. In Fig. 3a), you see a square lattice; obviously, such a lattice is a Bravais lattice and a possible set of primitive vectors is shown in the figure. With respect to the given cartesian coordinate system defined by the two perpendicular, equally long vectors \mathbf{z}_1 and \mathbf{z}_2 , these vectors are $\mathbf{a}_1 = 2\mathbf{z}_1$ and $\mathbf{a}_2 = 2\mathbf{z}_2$.

For each of the five lattices shown in Fig. 3a)–e), indicate whether it is a Bravais lattice, and if yes, draw the following:

(i) a set of primitive unit vectors (also provide a formula how they are defined with respect to the given cartesian coordinate system, following the example above);

(ii) a possible choice of a primitive unit cell which is *not* the Wigner-Seitz cell;

(iii) the Wigner-Seitz cell;

(iv) For each lattice (out of the five shown) which is *not* a Bravais lattice by itself, show how it can be represented by a Bravais lattice with a basis of two instead of one individual atoms, indicating a set of primitive unit vectors defining the points of the underlying Bravais lattice. Calculate these primitive unit vectors with respect to the given coordinate system; also calculate the position of the atoms in the basis with respect to the given coordinate system. (Hint: the origin of the given coordinate system is already at one of the possible Bravais lattice points...)

Figure 3: Different two-dimensional lattices. Panel a) shows a square Bravais lattice; a set of possible primitive vectors is defined by $\mathbf{a}_1 = 2\mathbf{z}_1$ and $\mathbf{a}_2 = 2\mathbf{z}_2$. In b), $\tan \theta = 2$, and in d) and e), $\theta = 60^{\circ}$.