
Chapter I

Linear Equations

1

I Linear Equations

I.1 Solving Linear Equations

I.1.1 Solving a non-singular system of n equations in n unknowns

Let’s start with a system of equations where the number of equations is the same as the
number of unknowns. Such a system can be written as a matrix equation

Ax = b,

where A is a square matrix, b is a given vector, and x is the vector of unknowns we are
trying to find. When A is non-singular (invertible) there is a unique solution. It is given by
x = A−1b, where A−1 is the inverse matrix of A. Of course, computing A−1 is not the most
efficient way to solve a system of equations.

For our first introduction to MATLAB/Octave, let’s consider an example:

A =

1 1 1
1 1 −1
1 −1 1

 b =

3
1
1

 ,
First we define the matrix A and the vector b. Here is the input (after the prompt symbol
>) and the output (without a prompt symbol).

>A=[1 1 1;1 1 -1;1 -1 1]

A =

1 1 1
1 1 -1
1 -1 1

>b=[3;1;1]

b =

3
1
1

Notice that that entries on the same row are separated by spaces (or commas) while rows
are separated by semicolons. In MATLAB/Octave, column vectors are n by 1 matrices and
row vectors are 1 by n matrices. The semicolons in the definition of b make it a column
vector. In MATLAB/Octave, X’ denotes the transpose of X. Thus we get the same result if
we define b as

2

I.1 Solving Linear Equations

>b=[3 1 1]’

b =

3
1
1

The solution can be found by computing the inverse of A and multiplying

>x = A^(-1)*b

x =

1
1
1

However if A is a large matrix we don’t want to actually calculate the inverse. The syntax
for solving a system of equations efficiently is

>x = A\b

x =

1
1
1

If you try this with a singular matrix A, MATLAB/Octave will complain and print an
warning message. If you see the warning, the answer is not reliable! You can always check
to see that x really is a solution by computing Ax.

>A*x

ans =

3
1
1

3

I Linear Equations

As expected, the result is b.

By the way, you can check to see how much faster A\b is than A^(-1)*b by using the
functions tic() and toc(). The function tic() starts the clock, and toc() stops the clock
and prints the elapsed time. To try this out, let’s make A and b really big with random
entries.

A=rand(1000,1000);
b=rand(1000,1);

Notice the semicolon ; at the end of the inputs. This suppresses the output. Without the
semicolon, MATLAB/Octave would start writing the 1,000,000 random entries of A to our
screen! Now we are ready to time our calculations.

tic();A^(-1)*x;toc();

Elapsed time is 44 seconds.

tic();A\x;toc();

Elapsed time is 13.55 seconds.

So we see that A\b quite a bit faster.

I.1.2 Reduced row echelon form

How can we solve Ax = b when A is singular, or not a square matrix (that is, the number
of equations is different from the number of unknowns)? In your previous linear algebra
course you learned how to use elementary row operations to transform the original system
of equations to an upper triangular system. The upper triangular system obtained this way
has exactly the same solutions as the original system. However, it is much easier to solve.
In practice, the row operations are performed on the augmented matrix [A|b].

If efficiency is not an issue, then addition row operations can be used to bring the system
into reduced row echelon form. In the this form, the pivot columns have a 1 in the pivot
position and zeros elsewhere. For example, if A is a square non-singular matrix then the
reduced row echelon form of [A|b] is [I|x], where I is the identity matrix and x is the
solution.

In MATLAB/Octave you can compute the reduced row echelon form in one step using the
function rref(). For the system we considered above we do this as follows. First define A
and b as before. This time I’ll suppress the output.

4

I.1 Solving Linear Equations

>A=[1 1 1;1 1 -1;1 -1 1];

>b=[3 1 1]’;

In MATLAB/Octave, the square brackets [...] can be used to construct larger matrices
from smaller building blocks, provided the sizes match correctly. So we can define the
augmented matrix C as

>C=[A b]

C =

1 1 1 3
1 1 -1 1
1 -1 1 1

Now we compute the reduced row echelon form.

>rref(C)

ans =

1 0 0 1
0 1 -0 1
0 0 1 1

The solution appears on the right.

Now let’s try to solve Ax = b with

A =

1 2 3
4 5 6
7 8 9

 b =

1
1
1

 ,
This time the matrix A is singular and doesn’t have an inverse. Recall that the determinant
of a singular matrix is zero, so we can check by computing it.

>A=[1 2 3; 4 5 6; 7 8 9];
>det(A)

ans = 0

However we can still try to solve the equation Ax = b using Gaussian elimination.

5

I Linear Equations

>b=[1 1 1]’;
>rref([A b])

ans =

1.00000 0.00000 -1.00000 -1.00000
0.00000 1.00000 2.00000 1.00000
0.00000 0.00000 0.00000 0.00000

Letting x3 = s be a parameter, and proceeding as you learned last year, we arrive at the
general solution

x =

−1
1
0

+ s

 1
−2
1

On the other hand, if

A =

1 2 3
4 5 6
7 8 9

 b =

1
1
0

 ,
then

>rref([1 2 3 1;4 5 6 1;7 8 9 0])

ans =

1.00000 0.00000 -1.00000 0.00000
0.00000 1.00000 2.00000 0.00000
0.00000 0.00000 0.00000 1.00000

tells us that there is no solution.

I.1.3 Gaussian elimination steps using MATLAB/Octave

If C is a matrix in MATLAB/Octave, then C(1,2) is the entry in the 1st row and 2nd column.
The whole first row can be extracted using C(1,): while C(,2): yields the second column.
Finally we can pick out the submatrix of C consisting of rows 1-2 and columns 2-4 with the
notation C(12,2:4):.

Let’s illustrate this by performing a few steps of Gaussian elimination on the augmented
matrix from our first example. Start with

C=[1 1 1 3; 1 1 -1 1; 1 -1 1 1];

6

I.1 Solving Linear Equations

The first step in Gaussian elimination is to subtract the first row from the second.

>C(2,:)=C(2,:)-C(1,:)

C =

1 1 1 3
0 0 -2 -2
1 -1 1 1

Next, we subtract the first row from the third.

>C(3,:)=C(3,:)-C(1,:)

C =

1 1 1 3
0 0 -2 -2
0 -2 0 -2

To bring the system into upper triangular form, we need to swap the second and third rows.
Here is the MATLAB/Octave code.

>temp=C(3,:);C(3,:)=C(2,:);C(2,:)=temp

C =

1 1 1 3
0 -2 0 -2
0 0 -2 -2

I.1.4 Matrix norm and condition number

There are many ways to measure the size of a matrix A. For example, we could consider A
to be a large vector whose entries happen to be written in a box rather than in a column or
a row. From this point of view a natural norm to use is

‖A‖HS =
√∑

i

∑
j

|ai,j |2.

This norm is called the Hilbert-Schmidt norm. It has the advantage of being easy to compute.

7

I Linear Equations

However, when A is considered as a linear transformation or operator, acting on vectors,
there is another norm that is natural to use. It is defined by

‖A‖ = max
x:‖x‖6=0

‖Ax‖
‖x‖

This norm measures the maximum factor by which A can stretch the length of a vector. An
equivalent definition is

‖A‖ = max
x:‖x‖=1

‖Ax‖

The reason why these definitions give the same answer is that the quantity ‖Ax‖/‖x‖ does
not change if we multiply x by a scalar. So, when calculating the maximum in the first
expression for ‖A‖, we we need only pick one vector in any given direction, and we might as
well choose the unit vector.

In general, there is no easy formula that computes ‖A‖ from its entries. However, if A is
a diagonal matrix there is. As an example let’s consider a diagonal matrix

A =

3 0 0
0 2 0
0 0 1

If

x =

x1

x2

x3

then

Ax =

3x1

2x2

x3

so that

‖Ax‖2 = |3x1|2 + |2x2|2 + |x3|2

= 32|x1|2 + 22|x2|2 + |x3|2

≤ 32|x1|2 + 32|x2|2 + 32|x3|2

= 32‖x‖2

This implies that for any unit vector x

‖Ax‖ ≤ 3

and taking the maximum over all unit vectors x yields ‖A‖ ≤ 3. On the other hand, the
maximum of ‖Ax‖ over all unit vectors x is larger than the value of ‖Ax‖ for any particular

8

I.1 Solving Linear Equations

unit vector. In particular, if

e1 =

1
0
0

then

‖A‖ ≥ ‖Ae1‖ = 3

Thus we see that
‖A‖ = 3.

In general, the matrix norm of a diagonal matrix with diagonal entries λ1, λ2, · · · , λn is the
largest value of |λk|.

The MATLAB/Octave code for a diagonal matrix with diagonal entries 3, 2 and 1 is
diag([3 2 1]) and the expression for the norm of A is norm(A). So for example

>norm(diag([3 2 1]))

ans = 3

Let’s return to the situation where A is a square matrix and we are trying to solve Ax = b.
If A is a matrix arising from a real world application (for example if A contains values
measured in an experiment) then it will almost never happen that A is singular. After all,
a tiny change in any of the entries of A can change a singular matrix to a non-singular one.
What is much more likely to happen is that A is close to being singular. In this case A−1

will still exist, but will have some enormous entries. This means that the solution x = A−1b
will be very sensitive to the tiniest changes in b so that it might happen that round-off error
in the computer completely destroys the accuracy of the answer.

To check whether a system of linear equations is well-conditioned, we might therefore think
of using ‖A−1‖ as a measure. But this isn’t quite right, since we actually don’t care if ‖A−1‖
is large, provided it stretches each vector about the same amount. For example. if we simply
multiply each entry of A by 10−6 the size of A−1 will go way up, by a factor of 106, but our
ability to solve the system accurately is unchanged. The new solution is simply 106 times
the old solution, that is, we have simply shifted the position of the decimal point.

So to measure how well conditioned a system of equations is, we take the ratio of the
largest stretching factor to the smallest shrinking factor. Another way of saying this is to let
x range over all unit vectors, and then take the ratio of the largest possible value of ‖Ax‖ to
the smallest possible value. This leads to the following definition for the condition number
of an invertible matrix:

cond(A) = ‖A‖‖A−1‖

9

I Linear Equations

To see that this is the ratio of the largest stretching factor to the smallest shrinking factor
note that

min
x 6=0

‖Ax‖
‖x‖

= min
x 6=0

‖Ax‖
‖A−1Ax‖

= min
y 6=0

‖y‖
‖A−1y‖

=
1

max
y 6=0

‖A−1y‖
‖y‖

=
1

‖A−1‖

Here we used the fact that if x ranges over all non-zero vectors so does y = Ax and that
the minimum of a collection of positive numbers is one divided by the maximum of their
reciprocals.

In our applications we will use the condition number as a measure of how well we can solve
the equations that come up accurately. To see why the condition number is a good measure
of this let’s start with a linear system of equations Ax = b and change the right side to
b′ = b + ∆b. The new solution is

x′ = A−1(b + ∆b) = x + ∆x

where x = A−1b is the original solution and the change in the solutions is ∆x = A−1∆b.
Now the absolute errors ‖∆b‖ and ‖∆x‖ are not very meaningful, since an absolute error
‖∆b‖ = 100 is not very large if ‖b‖ = 1, 000, 000 but is large if ‖b‖ = 1 What we really care
about are the relative errors ‖∆b‖/‖b‖ and ‖∆x‖/‖x‖. Can we bound the relative error
in the solution in terms of the relative error in the equation? The answer is yes since

‖∆x‖
‖x‖

=
‖A−1∆b‖
‖A−1b‖

=
‖A−1∆b‖
‖∆b‖

‖b‖
‖A−1b‖

‖∆b‖
‖b‖

=
‖A−1∆b‖
‖∆b‖

‖AA−1b‖
‖A−1b‖

‖∆b‖
‖b‖

≤ ‖A−1‖‖A‖‖∆b‖
‖b‖

= cond(A)
‖∆b‖
‖b‖

This equation gives the real meaning of the condition number. If the condition number is
near to 1 then the relative error of the solution is about the same as the relative error in
the equation. However, a large condition number means that a small relative error in the
equation can lead to a large relative error in the solution.

10

I.1 Solving Linear Equations

Summary: Math Concepts

Review:

• Matrix vector notation for linear equations.

• Solving systems of equations using Gaussian Elimination.

• Deciding whether there is a unique solution, many solutions or no solution.

• Matrix inverse.

New:

• Hilbert Schmidt norm

• Matrix (operator) norm

• Condition number

Summary: MATLAB/Octave Concepts

• Entering matrices (and vectors).

• Making larger matrices from smaller blocks.

• Multiplying matrices.

• Taking the inverse of a matrix.

• Taking the transpose of a matrix.

• Extracting elements, rows, columns, submatrices.

• Solving equations using A\b.

• Random matrices.

• Timing using tic() and toc().

• Computing the norm and condition number.

11

I Linear Equations

I.2 Interpolation

I.2.1 Introduction

Suppose we are given some points (x1, y1), . . . , (xn, yn) in the plane, where the points xi are
all distinct.

Our task is to find a function f(x) that passes through all these points. In other words, we
require that f(xi) = yi for i = 1, . . . , n. Such a function is called an interpolating function.
Problems like this arise in practical applications in situations where a function is sampled
at a finite number of points. For example, the function could be the shape of the model we
have made for a car. We take a bunch of measurements (x1, y1), . . . , (xn, yn) and send them
to the factory. What’s the best way to reproduce the original shape?

Of course, it is impossible to reproduce the original shape with certainty. There are in-
finitely many functions going through the sampled points.

To make our problem of finding the interpolating function f(x) have a unique solution,
we must require something more of f(x), either that f(x) lies in some restricted class of
functions, or that f(x) is the function that minimizes some measure of ”badness”. We will
look at both approaches.

12

I.2 Interpolation

I.2.2 Lagrange interpolation

For Lagrange interpolation, we try to find a polynomial p(x) of lowest possible degree that
passes through our points. Since we have n points, and therefore n equations p(xi) = yi to
solve, it makes sense that p(x) should be a polynomial of degree n− 1

p(x) = a1x
n−1 + a2x

n−2 + · · ·+ an−1x+ an

with n unknown coefficients a1, a2, . . . , an. (Don’t blame me for the screwy way of numbering
the coefficients. This is the MATLAB/Octave convention.)

The n equations p(xi) = yi are n linear equations for these unknown coefficients which we
may write as

xn−1
1 xn−2

1 · · · x2
1 x1 1

xn−1
2 xn−2

2 · · · x2
2 x2 1

...
...

. . .
...

...
...

xn−1
n xn−2

n · · · x2
n xn 1

a1

a2
...

an−2

an−1

an

=

y1

y2
...
yn

Thus we see that the problem of Lagrange interpolation reduces to solving a system of linear
equations. If this system has a unique solution, then there is exactly one polynomial p(x)
of degree n− 1 running through our points. This matrix for this system of equations has a
special form and is called a Vandermonde matrix.

To decide whether the system of equations has a unique solution we need to determine
whether the Vandermonde matrix is invertible or not. One way to do this is to compute the
determinant. It turns out that the determinant of a Vandermonde matrix has a particularly
simple form, but its a little tricky to see this. The 2× 2 case is simple enough:

det
([
x1 1
x2 1

])
= x1 − x2.

To go on to the 3 × 3 case we won’t simply expand the determinant, but recall that the
determinant is unchanged under row (and column) operations of the type ”add a multiple of
one row (column) to another.” Thus if we start with a 3× 3 Vandermonde determinant, add
−x1 times the second column to the first, and then add −x1 times the third column to the
second, the determinant doesn’t change and we find that

det

x2
1 x1 1
x2

2 x2 1
x2

3 x3 1

 = det

 0 x1 1
x2

2 − x1x2 x2 1
x2

3 − x1x3 x3 1

 = det

 0 0 1
x2

2 − x1x2 x2 − x1 1
x2

3 − x1x3 x3 − x1 1

Now we can take advantage of the zeros in the first row, and calculate the determinant by

13

I Linear Equations

expanding along the top row. This gives

det

x2
1 x1 1
x2

2 x2 1
x2

3 x3 1

 = det
([
x2

2 − x1x2 x2 − x1

x2
3 − x1x3 x3 − x1

])
= det

([
x2(x2 − x1) x2 − x1

x3(x3 − x1) x3 − x1

])

Now, we recall that the determinant is linear in each row separately. This implies that

det
([
x2(x2 − x1) x2 − x1

x3(x3 − x1) x3 − x1

])
= (x2 − x1) det

([
x2 1

x3(x3 − x1) x3 − x1

])
= (x2 − x1)(x3 − x1) det

([
x2 1
x3 1

])
But the determinant on the right is a 2× 2 Vandermonde determinant that we have already
computed. Thus we end up with the formula

det

x2
1 x1 1
x2

2 x2 1
x2

3 x3 1

 = −(x2 − x1)(x3 − x1)(x3 − x2)

The general formula is

det

xn−1

1 xn−2
1 · · · x2

1 x1 1
xn−1

2 xn−2
2 · · · x2

2 x2 1
...

...
. . .

...
...

...
xn−1
n xn−2

n · · · x2
n xn 1

 = ±
∏
i>j

(xi − xj),

where ± = (−1)n(n−1)/2. It can be proved by induction using the same strategy as we used for
the 3×3 case. The product on the right is the product of all differences xi−xj . This product
is non-zero, since we are assuming that all the points xi are distinct. Thus the Vandermonde
matrix is invertible, and a solution to the Lagrange interpolation problem always exists.

Now let’s use MATLAB/Octave to see how this interpolation works in practice. We begin
by putting some points xi into a vector X and the corresponding points yi into a vector Y.

>X=[0 0.2 0.4 0.6 0.8 1.0]
>Y=[1 1.1 1.3 0.8 0.4 1.0]

We can use the plot command in MATLAB/Octave to view these points. The command
plot(X,Y) will pop open a window and plot the points (xi, yi) joined by straight lines. In
this case we are not interested in joining the points (at least not with straight lines) so we
add a third argument: ’o’ plots the points as little circles. (For more information you can
type help plot on the MATLAB/Octave command line.) Thus we type

>plot(X,Y,’o’)
>axis([-0.1, 1.1, 0, 1.5])
>hold on

14

I.2 Interpolation

The axis command adjusts the axis. Normally when you issue a new plot command, the
existing plot is erased. The hold on prevents this, so that subsequent plots are all drawn on
the same graph. The original behaviour is restored with hold off

When you do this you should see a graph appear that looks something like this.

Now let’s compute the interpolation polynomial. Luckily there are build in functions in
MATLAB/Octave that make this very easy. To start with, the function vander(X) returns
the Vandermonde determinant corresponding to the points in X. So we define

>V=vander(X)

V =

0.00000 0.00000 0.00000 0.00000 0.00000 1.00000
0.00032 0.00160 0.00800 0.04000 0.20000 1.00000
0.01024 0.02560 0.06400 0.16000 0.40000 1.00000
0.07776 0.12960 0.21600 0.36000 0.60000 1.00000
0.32768 0.40960 0.51200 0.64000 0.80000 1.00000
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

We saw above that the coefficients of the interpolation polynomial are given by the solution
a to the equation V a = y. We find those coefficients using

>a=V\Y’

Let’s have a look at the interpolating polynomial. The MATLAB/Octave function polyval(a,X)
takes a vector X of x values, say x1, x2, . . . xn and returns a vector containing the values
p(x1), p(x2), . . . p(xn), where p is the polynomial whose coefficients are in the vector a, that
is,

p(x) = a1x
n−1 + a2x

n−2 + · · ·+ an−1x+ an

15

I Linear Equations

So plot(X,polyval(a,X)) would be the command we want, except that with the present
definition of X this would only plot the polynomial at the interpolation points. What we
want is to plot the polynomial for all points, or at least for a large number. The command
linspace(0,1,100) produces a vector of 100 linearly spaced points between 0 and 1, so the
following commands do the job.

>XL=linspace(0,1,100);
>YL=polyval(a,XL);
>plot(XL,YL);
>hold off

The result looks pretty good

The MATLAB/Octave commands for this example are in lagrange.m.

Unfortunately, things get worse when we increase the number of interpolation points. One
clue that there might be trouble ahead is that even for only six points the condition number
of V is quite high (try it!). Let’s see what happens with 18 points. We will take the x
values to be equally spaced between 0 and 1. For the y values we will start off by taking
yi = sin(2πxi). We repeat the steps above.

>X=linspace(0,1,18);
>Y=sin(2*pi*X);
>plot(X,Y,’o’)
>axis([-0.1 1.1 -1.5 1.5])
>hold on
>V=vander(X);
>a=V\Y’;
>XL=linspace(0,1,500);
>YL=polyval(a,XL);
>plot(XL,YL);

16

I.2 Interpolation

The resulting picture looks okay.

But look what happens if we change one of the y values just a little. We add 0.02 to the
fifth y value, redo the Lagrange interpolation and plot the new values in red.

>Y(5) = Y(5)+0.02;
>plot(X(5),Y(5),’or’)
>a=V\Y’;
>YL=polyval(a,XL);
>plot(XL,YL,’r’);
>hold off

The resulting graph makes a wild excursion and even though it goes through the given points,
it would not be a satisfactory interpolating function in a practical situation.

A calculation reveals that the condition number is

>cond(V)

ans = 1.8822e+14

If we try to go to 20 points equally spaced points between 0 and 1 the Vandermonde matrix
is so ill conditioned that MATLAB/Octave considers it to be singular.

17

I Linear Equations

Summary: Math Concepts

• Interpolation

• Lagrange interpolation by polynomials

• Finding the coefficients by solving a system of linear equations.

• Vandermonde matrix and how to compute its determinant.

• Why Lagrange interpolation is not a practical method for many points.

Summary: MATLAB/Octave Concepts

• Plotting basics, the function plot

• The functions linspace, vander and polyval and how to use them to plot the inter-
polating polynomial in Lagrange interpolation.

18

I.2 Interpolation

I.2.3 Cubic splines

In the last section we saw that Lagrange interpolation becomes impossible to use in practice
if the number of points becomes large. Of course, the constraint we imposed, namely that the
interpolating function be a polynomial of low degree, does not have any practical basis. It is
simply mathematically convenient. Let’s start again and consider how ship and airplane de-
signers actually drew complicated curves before the days of computers. Here is a picture of a
draughtsman’s spline (taken from http://pages.cs.wisc.edu/~deboor/draftspline.html
where you can also find a nice photo of such a spline in use)

It consists of a bendable but stiff strip held in position by a series of weights called ducks.
We will try to make a mathematical model of such a device.

We begin again with points (x1, y1), (x2, y2), . . . (xn, yn) in the plane. Again we are looking
for a function f(x) that goes through all these points. This time, we want to find the function
that has the same shape as a real draughtsman’s spline. We will imagine that the given points
are the locations of the ducks.

Clearly, f(x) should be a continuous function and it must pass through the given points.
This results in the equations

f(xi) = yi

19

I Linear Equations

for i = 1, . . . , n.

The next condition reflects the assumption that the strip is stiff but bendable. If the strip
were not stiff, say it were actually a rubber band that just is stretched between the ducks,
then our resulting function would be a straight line between each duck location (xi, yi).
At each duck location there would be a sharp bend in the function. In other words, even
though the function itself would be continuous, the first derivative would be discontinuous.
We will interpret the words “bendable but stiff” to mean that the first derivatives f ′(x) are
continuous everywhere, including each interior duck location xi.

For x in between the xi we assume that f is perfectly smooth (that is, all derivatives exist)
and that the higher derivatives have left and right limits at each xi.

To proceed further we need to invoke a bit of the physics of bendable strips. The bending
energy E[f] of a strip whose shape is described by the function f is given by the integral

E[f] =
∫ xn

x1

(
f ′′(x)

)2
dx

Now suppose that we have found the function f satisfying our constraints that minimizes
E[f]. This means that among all functions satisfying the constraints, f is the one for which
E[f] is smallest. This means that E[f + εh] can only be bigger, provided that f(x) + εh(x)
still satisfies our constraints. In other words there must be a local minimum for E[f + εh] at
ε = 0. So

dE[f + εh]
dε

∣∣∣∣
ε=0

= 0

provided f is our desired minimizer, and f(x) + εh(x) satisfies our constraints for every ε.

We can make this second condition more explicit. The first thing we require is for every i
that f(xi) + εh(xi) = yi for any ε. This only happens when

h(xi) = 0

for every i. The second thing we require is that f ′(x) + εh′(x) be continuous across each
interior xi, again for any ε. Since we are already assuming that f ′ is continuous, h′ must be
continuous at each interior xi too.

20

I.2 Interpolation

Now we compute the derivative with respect to epsilon and integrate by parts twice to
obtain

0 =
dE[f + εh]

dε

∣∣∣∣
ε=0

=
∫ xn

x1

2 (f ′′(x)′′ + εh′′(x))h′′(x)
∣∣
ε=0

dx

= 2
∫ xn

x1

f ′′(x)h′′(x)dx

= 2
n−1∑
i=1

∫ xi+1

xi

f ′′(x)h′′(x)dx

= 2
n−1∑
i=1

(
f ′′(x)h′(x)

∣∣x=xi+1

x=xi
− f ′′′(x)h(x)

∣∣x=xi+1

x=xi
+
∫ xi+1

xi

f ′′′′(x)h(x)dx
)

= 2
n−1∑
i=1

(
f ′′(x)h′(x)

∣∣x=xi+1

x=xi
+
∫ xi+1

xi

f ′′′′(x)h(x)dx
)

In the last line we used that h(xi) = 0. Now we rearrange the terms, keeping in mind that
h′ is continuous at each xi. This gives (dividing by 2)

0 = −h′(x1)f ′′(x1+)+
n−1∑
i=2

h′(xi)(f ′′(xi+)−f ′′(xi−))+h′(xn)f ′′(xn+)+
n−1∑
i=1

∫ xi+1

xi

f ′′′′(x)h(x)dx

For f to be the minimizer, this equation has to be true for every admissible choice of h. In
particular, we could choose h that is zero everywhere except in the open interval (xi, xi+1).
For all such h we then would obtain 0 =

∫ xi+1

xi
f ′′′′(x)h(x)dx. This can only happen if

f ′′′′(x) = 0 for xi < x < xi+1

But once we know this, we need only choose h with one h′(xi) equal to 1 and all the others
zero to conclude

f ′′(x1+) = 0
f ′′(xi+) = f ′′(xi−) for i = 2, . . . , n− 1
f ′′(xn−) = 0

In particular, f ′′ must be continuous across each interior duck position.

One final point about this derivation: By integrating four times, we see that the condition
f ′′′′(x) = 0 in each interval (xi, xi+1) is the same as saying that f(x) is a cubic polynomial.

We can summarize the discussion as follows: The mathematical description of the shape of a
spline is a function f(x) that is a cubic polynomial in each interval (xi, xi+1). The polynomial
can change from interval to interval, but the resulting function f must be continuous and
pass through the specified points. The first and second derivatives f ′(x) and f ′′(x) must
be continuous as well. Finally we require f ′′ = 0 at both endpoints.

21

I Linear Equations

A reference for this material is Essentials of numerical analysis, with pocket calculator
demonstrations, by Henrici.

I.2.4 The linear equations for cubic splines

Let us now turn this description into a system of linear equations. In each interval (xi, xi+1),
for i = 1, . . . n− 1, f(x) is given by a cubic polynomial pi(x) which we can write in the form

pi(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di

for coefficients ai, bi, ci and di to be determined. For each i = 1, . . . n − 1 we require that
pi(xi) = yi and pi(xi+1) = yi+1. Since pi(xi) = di, the first of these equations is satisfied if
di = yi. So let’s simply make that substitution. This leaves the n− 1 equations

pi(xi+1) = ai(xi+1 − xi)3 + bi(xi+1 − xi)2 + ci(xi+1 − xi) + yi = yi+1.

Secondly, we require continuity of the first derivative across interior xi’s. This translates to
p′i(xi+1) = p′i+1(xi+1) or

3ai(xi+1 − xi)2 + 2bi(xi+1 − xi) + ci = ci+1

for i = 1, . . . , n− 2, giving an additional n− 2 equations. Next, we require continuity of the
second derivative across interior xi’s. This translates to p′′i (xi+1) = p′′i+1(xi+1) or

6ai(xi+1 − xi) + 2bi = 2bi+1

for i = 1, . . . , n− 2, once more giving an additional n− 2 equations. Finally, we require that
p′′1(x1) = p′′n−1(xn) = 0. This yields two more equations

2b1 = 0
6an−1(xn − xn−1) + 2bn−1 = 0

for a total of 3(n− 1) equations for the same number of variables.

We now specialize to the case where the distances between the points xi are equal. Let
L = xi+1 − xi be the common distance. Then the equations read

aiL
3 + biL

2 +ciL = yi+1 − yi
3aiL2 + 2biL +ci − ci+1 = 0
6aiL+ 2bi −2bi+1 = 0

for i = 1 . . . n− 2 together with

an−1L
3 + bn−1L

2 +cn−1L = yn − yn−1

+ 2b1 = 0
6an−1L+ 2bn−1 = 0

22

I.2 Interpolation

We make one more simplification. After multiplying some of the equations with suitable
powers of L we can write these as equations for αi = aiL

3, βi = biL
2 and γi = ciL. They

have a very simple block structure. For example, when n = 4 the matrix form of the equations
is

1 1 1 0 0 0 0 0 0
3 2 1 0 0 −1 0 0 0
6 2 0 0 −2 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 3 2 1 0 0 −1
0 0 0 6 2 0 0 −2 0
0 0 0 0 0 0 1 1 1
0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 6 2 0

α1

β1

γ1

α2

β2

γ2

α3

β3

γ3

=

y2 − y1

0
0

y3 − y2

0
0

y4 − y3

0
0

Notice that the matrix in this equation does not depend on the points (xi, yi). It has a 3× 3
block structure. If we define the 3× 3 blocks

N =

1 1 1
3 2 1
6 2 0

M =

0 0 0
0 0 −1
0 −2 0

0 =

0 0 0
0 0 0
0 0 0

T =

0 0 0
0 2 0
0 0 0

V =

1 1 1
0 0 0
6 2 0

then the matrix in our equation has the form

S =

N M 0
0 N M
T 0 V

Once we have solved the equation for the coefficient αi, βi and γi the function f(x) in the
interval xi, xi+1 is given by

f(x) = pi(x) = αi

(
x− xi
L

)3

+ βi

(
x− xi
L

)2

+ γi

(
x− xi
L

)
+ yi

23

I Linear Equations

Now let us use MATLAB/Octave to plot a cubic spline. To start, we will do an example
with four interpolation points. The matrix S in the equation is defined by

>N=[1 1 1;3 2 1;6 2 0];
>M=[0 0 0;0 0 -1; 0 -2 0];
>Z=zeros(3,3);
>T=[0 0 0;0 2 0; 0 0 0];
>V=[1 1 1;0 0 0;6 2 0];
>S=[N M Z; Z N M; T Z V]

S =

1 1 1 0 0 0 0 0 0
3 2 1 0 0 -1 0 0 0
6 2 0 0 -2 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 3 2 1 0 0 -1
0 0 0 6 2 0 0 -2 0
0 0 0 0 0 0 1 1 1
0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 6 2 0

Here we used the function zeros(n,m) which defines an n×m matrix filled with zeros.

To proceed we have to know what points we are trying to interpolate. We pick four (x, y)
values and put them in vectors. Remember that we are assuming that the x values are
equally spaced.

>X=[1, 1.5, 2, 2.5];
>Y=[0.5, 0.8, 0.2, 0.4];

We plot these points on a graph.

>plot(X,Y,’o’)
>hold on

Now let’s define the right side of the equation

>b=[Y(2)-Y(1),0,0,Y(3)-Y(2),0,0,Y(4)-Y(3),0,0];

and solve the equation for the coefficients.

24

I.2 Interpolation

>a=S\b’;

Now let’s plot the interpolating function in the first interval. We will use 50 closely spaced
points to get a smooth looking curve.

>XL = linspace(X(1),X(2),50);

Put the first set of coefficients (α1, β1, γ1, y1) into a vector

>p = [a(1) a(2) a(3) Y(1)];

Now we put the values p1(x) into the vector YL. First we define the values (x−x1)/L and put
them in the vector XLL. To get the values x − x1 we want to subtract the vector with X(1)
in every position from X. The vector with X(1) in every position can be obtained by taking
a vector with 1 in every position (in MATLAB/Octave this is obtained using the function
ones(n,m)) and multiplying by the number X(1). Then we divide by the (constant) spacing
between the xi values.

>L = X(2)-X(1);
>XLL = (XL - X(1)*ones(1,50))/L;

Now we evaluate the polynomial p1(x) and plot the resulting points.

>YL = polyval(p,XLL);
>plot(XL,YL);

To complete the plot, we repeat this steps for the intervals (x2, x3) and (x3, x4).

>XL = linspace(X(2),X(3),50);
>p = [a(4) a(5) a(6) Y(2)];
>XLL = (XL - X(2)*ones(1,50))/L;
>YL = polyval(p,XLL);
>plot(XL,YL);
>XL = linspace(X(3),X(4),50);
>p = [a(7) a(8) a(9) Y(3)];
>XLL = (XL - X(3)*ones(1,50))/L;
>YL = polyval(p,XLL);
>plot(XL,YL);

The result looks like

25

I Linear Equations

I have automated the procedure above and put the result in two files splinemat.m and
plotspline.m. splinemat(n) returns the (n− 1)× (n− 1) matrix used to compute a spline
through n points while plotspline(X,Y) plots the cubic spline going through the points in
Y and Y If you put these files in you MATLAB/Octave directory you can use them like this:

>splinemat(3)

ans =

1 1 1 0 0 0
3 2 1 0 0 -1
6 2 0 0 -2 0
0 0 0 1 1 1
0 2 0 0 0 0
0 0 0 6 2 0

and

>X=[1, 1.5, 2, 2.5];
>Y=[0.5, 0.8, 0.2, 0.4];
>plotspline(X,Y)

to produce the plot above.

Let’s use these functions to compare the cubic spline interpolation with the Lagrange
interpolation by using the same points as we did before. Remember that we started with the
points

>X=linspace(0,1,18);
>Y=sin(2*pi*X);

26

I.2 Interpolation

Let’s plot the spline interpolation of these points

>plotspline(X,Y);

Here is the result with the Lagrange interpolation added (in red). The red (Lagrange) curve
covers the blue one and its impossible to tell the curves apart.

Now we move one of the points slightly, as before.

>Y(5) = Y(5)+0.02;

Again, plotting the spline in blue and the Lagrange interpolation in red, here are the results.

This time the spline does a much better job! Let’s check the condition number of the
matrix for the splines. Recall that there are 18 points.

>cond(splinemat(18))

ans = 32.707

Recall the Vandermonde matrix had a condition number of 1.8822e+14. This shows that
the system of equations for the splines is very much better conditioned, by 13 orders of
magnitude!!

27

I Linear Equations

Summary: Math Concepts

• Finding the shape with the smallest bending energy

• Cubic splines and how to compute them.

Summary: MATLAB/Octave Concepts

• The functions zeros and ones.

• Using m files.

28

I.3 Finite difference approximations

I.3 Finite difference approximations

I.3.1 Introduction and example

One of the most important applications of linear algebra is the approximate solution of
differential equations. In a differential equation we are trying to solve for an unknown
function. The basic idea is to turn a differential equation into a system of N × N linear
equations. As N becomes large, the vector solving the system of linear equations becomes a
better and better approximation to the function solving the differential equation.

In this section we will learn how to use linear algebra to find approximate solutions to a
boundary value problem of the form

f ′′(x) + q(x)f(x) = r(x) for 0 ≤ x ≤ 1

subject to boundary conditions

f(0) = A, f(1) = B

As differential equations go, this is a very simple one. For one thing it is an ordinary
differential equation (ODE), because it only involves one independent variable x. But the
finite difference methods we will introduce can also be applied to partial differential equations
(PDE).

It can be useful to have a picture in your head when thinking about an equation. Here is
a situation where an equation like the one we are studying arises. Suppose we want to find
the shape of a stretched hanging cable. The cable is suspended above the points x = 0 and
x = 1 at heights of A and B respectively and hangs above the interval 0 ≤ x ≤ 1. Our goal
is to find the height f(x) of the cable above the ground at every point x between 0 and 1.

The loading of the cable is described by a function 2r(x) that takes into account both the
weight of the cable and any additional load. Assume that this is a known function. The
height function f(x) is the function that minimizes the sum of the bending energy and the
gravitational potential energy given by

E[f] =
∫ 1

0
(f ′(x))2 + 2r(x)f(x)dx

29

I Linear Equations

subject to the condition that f(0) = A and f(1) = B. An argument similar (but easier) to
the one we did for splines shows that the minimizer satisfies the differential equation

f ′′(x) = r(x)

So we end up with the special case of our original equation where q(x) = 0. Actually,
this special case can be solved by simply integrating twice and adjusting the constants of
integration to ensure f(0) = A and f(1) = B. For example, when r(x) = r is constant and
A = B = 1, the solution is f(x) = 1 − rx/2 + rx2/2. We can use this exact solution to
compare against the approximate solution that we will compute.

I.3.2 Discretization

In the finite difference approach to solving differential equations approximately, we want to
approximate a function by a vector containing a finite number of sample values. Pick equally
spaced points xk = k/N , k = 0, . . . , N between 0 and 1. We will represent a function f(x)
by its values fk = f(xk) at these points.

F =

f0

f1
...
fN

 .

At this point we throw away all the other information about the function, keeping only the
values at the sampled points.

30

I.3 Finite difference approximations

If this is all we have to work with, what should be use as an approximation to f ′(x)? It
seems reasonable to use the slopes of the line segments joining our sampled points.

Notice, though, that there is one slope for every interval (xi, xi+1) so the vector containing
the slopes has one fewer entry than the vector F . The formula for the slope in the interval
(xi, xi+1) is (fi+1 − fi)/h = N(fi+1 − fi) where h = 1/N is the distance xi+1 − xi. Thus the
vector containing the slopes is

F ′ = N

f1 − f0

f2 − f1

f3 − f2
...

fN − fN−1

 = N

−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
0 0 −1 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1

f0

f1

f2

f3
...
fN

= NDNF

where DN is the N × (N + 1) finite difference matrix in the formula above. The vector F ′ is
our approximation to the first derivative function f ′(x)

To approximate the second derivative f ′′(x), we repeat this process to define the vector F ′′.
There will be one entry in this vector for each adjacent pair of slopes, that is, each adjacent
pair of entries of F ′. These are naturally labelled by the interior points x1, x2, . . . , xn−1.
Thus we obtain

F ′′ = N2DN−1DNF = N2

1 −2 1 0 · · · 0 0 0
0 1 −2 1 · · · 0 0 0
0 0 1 −2 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 −2 1

f0

f1

f2

f3
...
fN

Let rk = r(xk) be the sampled points for the load function r(x) and define the vector

approximation for r at the interior points

r =

 r1
...

rN−1

31

I Linear Equations

The reason we only define this vector for interior points is that that is where F ′′ is defined.
Now we can write down the finite difference approximation to f ′′(x) = r(x) as

N2DN−1DNF = r

This is a system of N − 1 equations in N + 1 unknowns. To get a unique solution, we need
two more equations. That is where the boundary conditions come in! Instead of writing two
extra equations, we will simply set f0 = A and fN = B in the vector F . Let’s denote the
vector of the remaining (unknown) interior values by f . Then, moving the terms involving A
and B to the right side of the equation and dividing by N2, we may rewrite the equation as

−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −2

 f = N−2r−

A
0
0
...
B

Now let’s use MATLAB/Octave to solve this equation. We will start with the test case

where r(x) = 1 and A = B = 1. In this case we know that the exact solution is f(x) =
1− x/2 + x2/2.

We will work with N = 50. The first thing is to define the (N − 1) × (N − 1) matrix on
the left, which we will call L Notice that L has a constant value of −2 on the diagonal, and
a constant value of 1 on the off-diagonals immediately above and below.

Before proceeding, we introduce the MATLAB/Octave command diag. For any vector D,
diag(D) is a diagonal matrix with the entries of diag(D) on the diagonal. So for example

>D=[1 2 3 4 5];
>diag(D)

ans =

1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5

An optional second argument offsets the diagonal. So, for example

>D=[1 2 3 4];
>diag(D,1)

32

I.3 Finite difference approximations

ans =

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4
0 0 0 0 0

>diag(D,-1)

ans =

0 0 0 0 0
1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0

Now returning to our matrix L we can define it as

>N=50;
>L=diag(-2*ones(1,N-1)) + diag(ones(1,N-2),1) + diag(ones(1,N-2),-1);

We will denote the right side of the equation by b. To start, we will define b to be N−2r
and then adjust the first and last entries to account for the boundary values. Recall that
r(x) is the constant function 1, so its sampled values are all 1 too. BR/¿

>b=ones(N-1,1)/N^2;
>A=1; B=1;
>b(1) = b(1) - A;
>b(N-1) = b(N-1) - B;

Now we solve the equation for f and attach the boundary values on either side to define the
vector F

>f=L\b;
>F=[A;f;B];

The x values are N + 1 equally spaced points between 0 and 1

>X=linspace(0,1,N+1);

33

I Linear Equations

Now we plot the result.

>plot(X,F)

Let’s superimpose the exact solution in red.

>hold on
>plot(X,ones(1,N+1)-X/2+X.^2/2,’r’)

(The . before an operator tells MATLAB/Octave to apply that operator element by element,
so X.^2 returns an array with each element the corresponding element of X squared.)

The two curves are indistinguishable.

What happens if we increase the load at a single point? Recall that we have set the loading
function r(x) to be 1 everywhere. Let’s increase it at just one point. Adding, say, 5 to one
of the values of r is the same as adding 5/N2 to the right side b. So the following commands
do the job. We are changing r10 which corresponds to changing r(x) at x = 0.2.

34

I.3 Finite difference approximations

>b(10) = b(10) + 5/N^2;
>f=L\b;
>F=[A;f;B];
>hold on
>plot(X,F);

Before looking at the plot let’s do this one more time, this time making the cable really heavy
at the same point.

>b(10) = b(10) + 50/N^2;
>f=L\b;
>F=[A;f;B];
>hold on
>plot(X,F);

Here is the resulting plot.

So far we have only considered the case of our equation f ′′(x) + q(x)f(x) = r(x) where
q(x) = 0. What happens when we add the term containing q? We must sample the function
q(x)(x) at the interior points and add the corresponding vector. Since we divided the whole
equation by N2 we must do the same to this term. Thus we must add the term

N−2

q1f1

q2f2
...

qN−1fN−1

 =

q1 0 0 · · · 0 0
0 q2 0 · · · 0 0
0 0 q3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 qN−1

 f

In other words, we replace the matrix L in our equation with L + N−2Q where Q is the
(N − 1)× (N − 1) diagonal matrix with the interior sampled points of q(x) on the diagonal.

35

I Linear Equations

I’ll leave it to a homework problem to incorporate this change in a MATLAB/Octave
calculation. One word of caution: the matrix L by itself is always invertible (with reasonable
condition number). However L+N−2Q may fail to be invertible. This reflects the fact that
the original differential equation may fail to have a solution for some choices of q(x) and
r(x).

Summary: Math Concepts

• Discretizing a differential equation f ′′(x) + f(x)q(x) = r(x)

Summary: MATLAB/Octave Concepts

• The diag(Q,n) function

36

