
Mech 221 Mathematics Lectures 1-4 Notes:
Overview and Numerical Methods

Brian Wetton, www.math.ubc.ca/∼wetton

September 21, 2008

1 Overview of Mathematics Material in Mech

221

Last year, most of you learned the basics of calculus in Math 100 (differential
calculus) and Math 101 (integral calculus). You also had an introduction to
linear algebra (vectors, matrices, linear systems, eigen-analysis) in Math 152,
where you were also introduced to the scientific software package, MATLAB.

This term, we will carry on with two main ideas from last year:

Numerical Approximation: Last year, you saw how integrals could be
approximated by left and right Riemann sums, and that more accu-
rate approximations could be found using the Trapezoid or Simpsons
Rules. We begin the course with a review of this subject, adding more
rigour to the theoretical expressions for the error made. More practical
experience with these methods will also be gained, using MATLAB to
do the computations. Numerical methods for approximating function
values (interpolation) and derivatives will then be considered.

Differential Equations: Last year in Math 101, you saw how exponential
growth and decay, draining tanks, and damped spring mass systems
could be described by differential equations. You learned some an-
alytic techniques to solve simple (linear, constant coefficient) second
order problems, and (in Math 152) first order systems. In this course,
we will review these previous topics, starting with first order differen-
tial equations, then moving to second order equations and ending with

1

first order differential equation systems. The main discussion is on lin-
ear, constant coefficient equations with simple forms for forcing terms.
However, we extend the discussion to more complicated equations when
possible. In addition, we will learn how to approximate solutions to
differential equations using numerical methods. Some theory of these
methods, practical matters, and implementation in MATLAB will all
be considered.

Two new important new ideas are introduced in this class: linearization and
non-dimensionalization (scaling).

The overall goal for the Mathematics part of Mech 221 is to make stu-
dents better understand the three part process of mathematical modelling,
specifically when these models involve differential equations:

1. The conversion of an engineering problem to a mathematical one (with
appropriate simplifications). This process is done also in all the other
subjects of Mech 221.

2. The solution of the mathematical problem. Often this step can only
be done approximately with numerical methods because of the size
or complexity of the problem. It is important to determine that the
numerical approximation used is accurate enough. The main subject of
Mathematics in Mech 221 is analytic and numerical solution techniques
to differential equations, which arise as models in many applications.

3. Relate the mathematical solution to the original Engineering prob-
lem. Since the mathematical model may not correspond exactly to the
physics, some check of the results against experimental tests should be
done here. The model may have to be revised to include more effects
or have parameters determined more accurately. This would set the
process back to the first step above.

Solving an engineering problem with pencil and paper (and computations)
in this way is much cheaper and faster than extensive physical design cycles.
In some cases, experimental work is not at all possible due to cost or safety
concerns. Mathematical modelling is particularly effective in problems where
elements with well defined properties are put together in a complex way.

2

Figure 1: The area is given by
∫ b
a f(x)dx

2 Numerical Integration

Recall the interpretation of an integral
∫ b
a f(x)dx as the area shown in Fig-

ure 1. In Math 101, you also saw many applications of integration: average
values, volumes, work, arc length, centre of mass, the solution of separable
differential equations (such as those coming from the application of Torri-
celli’s law to draining tanks).

From last year, you should know what an indefinite integral (anti-derivative)
is and how it relates to finding definite integrals (areas). You should be able
to do elementary integrals (integrands that come from simple derivatives)
and to use some basic integration rules (chain rule and product rules) and
techniques (trigonometric substitution and partial fractions).

Exercise 1 You should be able to evaluate the following integrals:∫ 1

0
sin xdx∫

e−xdx∫
xex2

dx∫
x cos xdx

3

Consider the indefinite integral∫
e−x2

dx. (1)

The integrand appears simple. You can find its derivative easily. This integral
(actually a scaled version of it) is important in the study of probability
(it represents cumulative probabilities of normal distributions) and other
fields. However, it is impossible to find an analytic form for this indefinite
integral in the “class of functions you know”. A scaled version of this integral
defines a new well-studied function known as the error function. However,
this function is not implemented on your mech2 approved calculator.

Exercise 2 Define as precisely as you can the class of functions you can find
derivatives of. This class corresponds to functions that you can evaluate on
your mech2 calculator. Why are these functions on your calculator and not
others (like say the error function)?

2.1 Riemann Sums

Definite integrals corresponding to difficult situations like (1) can occur in
applications. In these cases, numerical methods can be used to approxi-
mate the definite integrals. Let us consider a very basic idea to approximate
integrals, Left Riemann Sums. Consider

I =
∫ b

a
f(x)dx.

Divide the interval [a, b] into N equal subintervals having length

h =
b− a

N
.

The Left Riemann Sum

LN = hf(a) + hf(a + h) + hf(a + 2h) + · · ·+ hf(b− h)

can be used to approximate I. This is equivalent to approximating the area
I by the sum of the areas of N rectangular boxes as shown in Figure 2. As
N →∞ we know that LN → I (this was the definition of the integral). For
a given integrand f , interval [a, b] and N , Left Riemann sum approximation
of integrals are routine computations that can be done easily in MATLAB,
as discussed below. However, some important discussion is appropriate at
this point:

4

Figure 2: Using Left Riemann Sums to approximate definite integrals.

• The main question when using numerical integration is how large does
N have to be in order that the numerical approximation is “accurate
enough”. Accuracy requirements can vary significantly depending on
the application. Consider the extreme cases of a computation as part
of a structural design that has a built in safety factor of 50% compared
to a computation of the trajectory of a Mars mission.

• All your study last year learning how to evaluate integrals analytically
is still useful. Having an analytic answer takes out any concern over
the accuracy of an approximation. In addition, parameters can be in-
cluded in an analytic integration: you can see exactly how the solution
will depend on a parameter, rather than having to do many integral
approximations and try and piece together the parameter dependence.

• In many cases, the function f in question is only known experimentally
at discrete points. In this case, N is not something you can vary in order
to get more accurate approximations of the integral. Thus, numerical
integration is used both to evaluate integrals approximately for which
no analytic forms are known and to evaluate approximate integrals
where the function is only known at discrete points.

Exercise 3 Consider
∫ 1
0 f(x)dx approximated by Left Riemann Sums on 2

subintervals (of length h = 1/2). Sketch the graph of a function f for which

5

this approximation will be good. Sketch the graph of a different function f
for which this approximation will be terrible.

There is a rigorous estimate for the error that will help you determine how
many subintervals N you need to get accurate enough answers in approximate
integration using Left Riemann Sums:

I − LN = +
1

2
f ′(ξ)(b− a)h (2)

for some point ξ in the interval [a, b]. It is never necessary to find the point
ξ at which this applies, only to know that such a point exists. Note that the
point ξ will be different for every different N that you use. The expression
(2) makes sense:

• As N → ∞, h = (b − a)/N → 0 and the approximation is more
accurate.

• For functions that have large derivatives, f ′(ξ) can be large and the
error can be large. See Figure 2.

• If f ′(x) > 0 for all x in [a, b] then f ′(ξ) > 0 and by (2) LN will always
underestimate the integral I. This makes sense graphically.

In order for (2) to be useful in determining N needed for a given accuracy,
a bound on how large |f ′(x)| can be on the interval [a, b] is needed. The
quantity

K1 = max
x∈[a,b]

|f ′(x)|

could be used, but it is sufficient to find a number M such that

|f ′(x)| ≤ M for all x in [a, b].

Of course K1 ≤ M . With this information and (2) it is easy to see that

|I − LN | ≤
K1

2
(b− a)h =

K1

2

(b− a)2

N
≤ M

2

(b− a)2

N
(3)

These are expressions that can be used to determine how many subintervals
(or equivalently what spacing h) is needed to guarantee a given accuracy.

6

Example 1 Consider ∫ 3

1
f(x)dx.

It is known that for all x in the interval [1,3], |f ′(x)| < 5. How many
subintervals N should be used in a Left Riemann Sum approximation of the
integral in order to guarantee two decimal place accuracy?

• We use the first and fourth terms in (3) above

|error| ≤ M

2

(b− a)2

N

where M = 5 is the bound on the size of the absolute value of the
derivative of the function on the interval given to us by the question
and b− a = 3− 1 = 2 is the length of the interval.

• We now have
|error| ≤ 10/N

To ensure the solution is accurate to 2 decimal places, the error must
be smaller than 0.005, which is guaranteed if

10/N ≤ 0.005

or, rewriting
N ≥ 10/0.005 = 2000.

• To conclude, if we use Left Riemann Sums with N = 2000 (or more)
subintervals, the approximation is guaranteed to be of the required ac-
curacy.

2.2 Trapezoidal and Simpsons Rules

You know from Math 101 that you can get more accurate approximations to
integrals using other numerical methods than Riemann sums. That is, more
accuracy for the same N , or a smaller N to obtain the same accuracy.

One of the better methods is the Trapezoidal Rule:∫ b

a
f(x)dx ≈ TN =

h

2
f(a)+hf(a+h)+hf(a+2h)+ · · ·+hf(b−h)+

h

2
f(b).

7

Figure 3: Using the Trapezoidal Rule to approximate definite integrals.

Note that this is only a slight change from the Left Riemann Sum rule but it
gives approximations to integrals that are (generally) much more accurate.
The graphical interpretation of the trapezoidal rule is shown in Figure 3. The
area of the integral is approximated by thin (width h) trapezoidal regions.

Exercise 4 Suppose we have a cart that runs on a straight track with a
speedometer attached to it. The speedometer reports its speed every eighth
of a second and sends this data to a computer. In a certain experiment, the
cart returns the following sets of data, where t is the time (s) and v is the
velocity (m/s).

t = 0 0.1250 0.2500 0.3750 0.5000 0.6250 0.7500 0.8750 1.0000

v = 0 0.0183 0.1250 0.3201 0.5000 0.5335 0.3750 0.1281 0.0000

Suppose the experimenter cannot see the cart. Use the Trapezoidal Rule to
estimate how far the cart has moved in this one second.

As for Left Riemann Sums, there is a rigorous estimate for the error that
will help you determine how many subintervals N you need to get accurate
enough answers in approximate integration using the Trapezoidal Rule:

I − TN = − 1

12
f ′′(ξ)(b− a)h2 (4)

for some point ξ in [a, b]. The expression (4) makes sense:

8

• As N → ∞, h = (b − a)/N → 0 and the approximation is more
accurate. Note that the rate at which the error tends to zero is faster
than for Left Riemann Sums (h2 → 0 faster than h → 0).

• For functions that have large second derivatives, f ′′(ξ) can be large and
the error can be large. See Figure 3.

• If f ′′(x) > 0 for all x in [a, b] (f is concave up on the interval) then
f ′′(ξ) > 0 and by (4) TN will always overestimate the integral I. This
makes sense graphically.

An even more accurate method is Simpsons Rule, which can only be
applied when N is even. Here,∫ b

a
f(x)dx ≈ SN =

h

3
f(a) +

4h

3
f(a + h) +

2h

3
f(a + 2h) +

4h

3
f(a + 3h) +

2h

3
f(a + 4h) + · · ·+ 4h

3
f(b− h) +

h

3
f(b).

Note the pattern 14242 · · · 4241 in the coefficients.

Exercise 5 Repeat Exercise 4 using Simpsons Rule.

The error expression for Simpsons Rule is

I − SN = − 1

180
f (4)(ξ)(b− a)h4 (5)

where f (4) is the fourth derivative of f . Note that as you use more and more
subintervals in the approximation (N → ∞ so h → 0) then Simpsons Rule
is expected to be more accurate than the other methods (h4 � h2 � h for h
small). We shall see this in the numerical studies in the next section.

Example 2 Consider approximating
∫ 1
0 f(x)dx. Define

Kj = max
x∈[0,1]

f (j)(x).

It is known that K1 = 1, K2 = 2 and K4 = 1000. What method would you
use to approximate the integral if errors of 0.1 were acceptable? (pick the
method that requires the least amount of computational work, measured by
the number of function evaluations). Repeat the question if errors smaller
than 10−8 are required.

9

• Here h = 1/N since the interval of integration is of length one.

• Using (3) and proceeding as in Example 1 we see that to ensure the
desired accuracy

1

2NL

≤ 0.1

or NL ≥ 5.

• Starting from (4) we see that what is desired is

|error in trapezoidal rule| ≤ 1

12
K2(b− a)h2 ≤ 0.1

so in this case
2

12

1

N2
T

≤ 0.1

which implies

N2
T ≥

20

12
so NT ≥

√
20

12
≥ 1.3.

Since NT has so satisfy the above inequality and be an integer, NT ≥ 2
subintervals are required to achieve the target accuracy with trapezoidal
rule.

• Starting from (5) we follow the same pattern as above

|error in simpsons rule| ≤ 1

180
K4(b− a)h4 ≤ 0.1

so in this case
1000

180

1

N4
S

≤ 0.1

which implies

N4
S ≥

10000

180
so NS ≥ 4

√
1000

18
≥ 2.8.

Since NS has so satisfy the above inequality and be an even integer,
NS ≥ 4 subintervals are required to achieve the target accuracy with
simpsons rule.

• Trapezoidal Rule is the most efficient for this modest accuracy.

10

• Following the same algebra as above, for an accuracy of 10−8 the number
of subintervals needed is

NL ≥ 5× 107

NT ≥
√

2× 108

12
≥ 5774

NS ≥ 4

√
108

180
≥ 28.

Simpson’s Rule is much more efficient than the others for this case
where high accuracy is required.

• The take home message from this example is that higher order methods
are much more efficient at computing accurate approximations. As a
rule of thumb, use second order approximations for standard engineer-
ing applications, and fourth order methods in situations where higher
accuracy is needed.

2.3 Numerical Integration Example

Let’s take as an example

I =
∫ 1

0
sin xdx = 1− cos(1) ≈ 0.4597

Using numerical methods on this integral is just a theoretical exercise since
the exact value is easy to determine. This is convenient for our example since
then we can see how the errors to the exact value behave.

Lets work out L4, T4 and S4 for this example by hand (well, with our
mech2 calculator). The 4 means N = 4, four subintervals. The length of
the subintervals is h = 1/4 and they are [0, 1/4], [1/4, 1/2], [1/2, 3/4] and
[3/4, 1]. We can compute

L4 =
1

4
(sin 0 + sin 1/4 + sin 1/2 + sin 3/4) ≈ 0.3521

where the factor of 1/4 is the common factor of h in the formula for Left
Riemann Sums. When evaluating this on your calculator, do not forget to
switch to the mode in which trigonometric functions take arguments in radi-
ans. Similarly we can compute

T4 =
1

4
(
1

2
sin 0 + sin 1/4 + sin 1/2 + sin 3/4 +

1

2
sin 1) ≈ 0.4573

11

N I − LN Bound
2 0.2200 0.2500
4 0.1076 0.1250
8 0.0532 0.0625
16 0.0264 0.0313
32 0.0132 0.0156

Table 1: Errors and theoretical error bounds for Left Riemann Sums applied
to the integral

∫ 1
0 sin xdx.

N I − LN I − TN I − SN

2 0.2200 0.0096 1.6 ×10−4

4 0.1076 0.0024 1.0 ×10−5

8 0.0532 0.00060 6.2 ×10−7

16 0.0264 0.00015
32 0.0132 0.00004

Table 2: Approximate integration methods applied to the integral
∫ 1
0 sin xdx.

and

S4 =
1

12
(sin 0 + 4 sin 1/4 + 2 sin 1/2 + 4 sin 3/4 + sin 1) ≈ 0.4597

where the factor of 1/12 is the common factor h/3 in the formula for the rule.
Note that the Simpsons Rule approximation is the most accurate (all four
decimal places shown are correct), Trapezoidal Rule is the next best and the
Left Riemann Sums are the least accurate.

Using MATLAB as discussed below, we fill in Tables 1 and 2 for this
example. The lines for N = 4 can be filled out with the calculations we did
by hand above. In Table 1 we compare the errors made with Left Riemann
Sums to the error bounds

|I − LN | ≤
K1

2N
.

In this case
d

dx
sin x = cos x and | cos x| ≤ 1 on [0,1]

which gives us K1 = 1. In Table 1 notice that the errors made are always
smaller than the theoretical bound on the error (this is guaranteed by the

12

theory). If you look at Table 2 carefully, you see that there is a real pattern to
the errors. For Left Riemann Sums, every time N is doubled, the error goes
down (approximately) by a factor of 2. For Trapezoidal Rule and Simpsons
Rule the error goes down by factors of 4 and 16 respectively when N is
doubled. These suggest that the errors look approximately like

I − LN ≈ C1h

I − TN ≈ C2h
2

I − SN ≈ C3h
4

for constants C1, C2 and C3. Written in another way,

lim
h→0

I − LN

h
= C1

lim
h→0

I − TN

h2
= C2

lim
h→0

I − SN

h4
= C3.

Note that this does not contradict (2, 4, 5). In fact it is a stronger statement.
Using the Left Riemann Sums as an example, it implies that the value of

f ′(ξ)

in the error expression (2) becomes independent of N for N large. This is
generally true, you can see why this is true for Left Riemann Sums by working
through Exercise 10. If a numerical method with a parameter h satisfies

lim
h→0

error

hp
= C

where C is a nonzero constant and p is a positive constant, the method is
said to be convergent (as h → 0 the error goes to zero) with order p. Left
Riemann Sum is a first order method p = 1, Trapezoidal Rule is a second
order method p = 2 and Simpsons Rule is a fourth order method p = 4.
From the examples and exercises above, it is clear that higher order methods
(large p) save computational work (can give accurate answers even when h is
not that small), especially when highly accurate approximations are needed.
In a later section, we will see how to construct higher order methods from
lower order ones using Richardson extrapolation.

13

2.4 Using MATLAB to do numerical approximation of
integrals

In this section, we will see how to use MATLAB commands to do the numer-
ical integration calculations when f is too complicated or N is too large to
do the computations by hand. However, we will just use the simple integral
of sin x from 0 to 1 as in the last section as an example. To get a vector x
of values at the ends of 8 equally spaced subintervals between 0 and 1 and a
vector y of corresponding sin x values type

x = linspace(0,1,9);

y = sin(x);

Note that for 8 subintervals there are 9 end points. Remember that to
get more information on MATLAB commands, for example the linspace

command, you would type

help linspace

The spacing is

h = 1/8;

The Left Riemann Sum approximation of∫ 1

0
sin xdx (6)

is then given by the MATLAB command

h*sum(y(1:8))

Note that for the Left Riemann Sum, the last point (number 9) in y is not
included in the sum.

There is no need to write separate code for the Trapezoidal Rule, it is
already implemented as a MATLAB command

trapz(x,y)

Note that this command allows the grid points x to be unequally spaced.
For Simpsons Rule, we need to construct the vector of coefficients 142424241.

This is done below for general even N:

14

N = 8;

simpc = zeros(1,N+1)+2;

simpc(1) = 1;

simpc(N+1) = 1;

simpc(2:2:N) = 4;

The Simpsons Rule approximation of (6) is then given by

h/3*sum(simp.*y)

Remember that the .* is used for pointwise multiplication of vectors of the
same length.

Consider now ∫ 1

0
arctan xdx. (7)

This integral can be done analytically (see Exercise 6 below). However let’s
pretend we can’t, and also that it is too difficult to find bounds on the higher
derivatives of the integrand to use the theoretical expressions for the error.
We can easily compute trapezoidal rule approximations of the integral

N = 2;

x = linspace(0,1,N+1);

y = atan(x);

trapz(x,y)

This can be put into a .m file so that the same code can be used for different
N (or use the up arrow key to repeat lines you have typed in). Running
this gives the approximation 0.4282. With just this one number we can’t be
sure at all how accurate it is. However, repeat for N = 4, 8, 16, 32 to get
approximations 0.4362, 0.4382, 0.4387, 0.4388. We know that TN converges
to the exact value of the integral as N →∞. The TN values we are computing
are getting closer and closer to something that is approximately 0.4388. As
a rule of thumb: when using a second order or higher method, digits that do
not change as N is doubled (h is halved) are correct. It is true that the exact
value of (7) is approximately 0.439, obeying this rule.

Numerical approximation of integrals to a specific accuracy are the topic
of your first computer lab.

Exercise 6 Evaluate (7) exactly.

15

2.5 A Final Exercise

Exercise 7 Consider doing numerical integration on∫ 1

0
f(x)dx

where f(x) has the following forms:

f(x) = ex2

(exact integral not known)

f(x) =

{
sin(2x2) for x ≤ 1/

√
2

sin
(

1
2x2

)
for x > 1/

√
2

f(x) =
cos x√

x
(singular integrand)

Discuss how you would handle these cases and how you would ensure that the
approximations you obtained were accurate enough for your allowed tolerance.

3 Taylor Polynomial Approximation

3.1 Linear and Quadratic Approximation

For x near a we have the linear (tangent line) approximation:

f(x) ≈ f(a) + f ′(a)(x− a)

As an example, take a = 0 and f(x) = ex to get the linear approximation

ex ≈ 1 + x (8)

as shown in Figure 4. The approximation is called linear because the original
function is approximated by a straight line. It is also called first order ap-
proximation because the approximating function is a first order polynomial.
This is an artificial example. The function ex is well-known and easy to eval-
uate on your mech2 calculator. However, imagine a (differentiable) function
that is hard to evaluate. It would be great to replace it with a simple lin-
ear function that was “accurate enough” for values of x “near” a. We will
consider in more detail the errors from such an approximation below.

A better approximation is the quadratic one

f(x) ≈ f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2

16

Figure 4: Linear approximation of ex near x = 0

Figure 5: Quadratic approximation of ex near x = 0 (dotted). The linear
approximation (dashed) is also shown for comparison.

Note that the values, derivatives and second derivatives of the function and
its approximation are the same at x = a. This is called a quadratic approx-
imation or a second order Taylor Polynomial approximation of the function
at the point x = a.

Considering a = 0 and f(x) = ex again we get the quadratic approxima-
tion

ex ≈ 1 + x +
x2

2

shown in Figure 5.

Exercise 8 Find the quadratic Taylor approximation of ex based at a = 1.
Convert it to standard quadratic form, that is write it in the form

c0 + c1x + c2x
2

17

with constants c0, c1, and c2.

3.2 Error Expression for Linear Approximation

The error expression for linear approximation is given in the following theo-
rem:

Theorem 1

f(x)− [f(a) + f ′(a)(x− a)] =
f ′′(ξ)

2
(x− a)2

for some ξ between a and x.

Note that the left hand side (LHS) above is the difference between the value
of the exact function and the value of the linear approximation at x (the
error). This expression makes sense:

• The approximation gets worse (the error gets larger) as |x − a| gets
larger, that is as we move away from the point a at which the approx-
imation is based.

• If f ′′ is large near a then the approximation may not be accurate.

• If f ′′(x) > 0 (f is concave up) for x near a then the linear approximation
will underestimate the function values.

The proof of this theorem, together with the proof of Rolle’s Theorem
below (used as a lemma, as a part of the proof of the theorem above) are
given in an appendix to these notes.

Theorem 2 If f is differentiable, f(a) = 0 and f(b) = 0 then there is a
point ξ in (a, b) at which f ′(ξ) = 0.

Exercise 9 If f(2) = 1 and f ′(2) = 5 write down the linear approximation
to f for values of x near 2. If it is known that |f ′′(x)| < 3 for all x, determine
the largest interval of x values around a = 2 for which you can guarantee that
the linear approximation found above is accurate to at least three significant
figures.

18

Figure 6: Left Riemann Sum approximation in one subinterval.

3.3 Application to Left Riemann Sums

The error estimate in Theorem 1 can be used to prove the error estimate for
Left Riemann Sums in (2). Consider

F (x) =
∫ x

a
f(s)ds.

Standard application of the error equation for linear approximation gives

F (x) = F (a) + F ′(a)(x− a) +
1

2
F ′′(ξ)(x− a)2

where ξ is between x and a and we have moved the linear approximation to
the RHS. Note that F (a) = 0 and also that F ′(a) = f(a) and F ′′(ξ) = f ′(ξ)
by the Fundamental Theorem of Calculus. Now∫ a+h

a
f(x)dx = F (a + h) = f(a)h +

1

2
f ′(ξ)h2.

where ξ is between a and a+h. Apply this to one subinterval of Left Riemann
Sums as shown in Figure 6. Now sum over all subintervals (N subintervals
length h = (b− a)/N):∫ b

a
f(x)dx− LN =

1

2
(f ′(ξ1) + · · · f ′(ξj) + · · · f ′(ξN))h2

=
1

2
(b− a)(f ′(ξ1) + · · · f ′(ξj) + · · · f ′(ξN))/Nh

19

where h = (b−a)/N was used to get the second line and each ξj is in the j’th
subinterval [a+(j−1)h, a+ jh]. Note that the RHS of the second line above
contains an average of N values of a continuous function on an interval. Such
an average is between the largest and smallest values on the interval. By the
Intermediate Value Theorem, this average value is attained at a point ξ in
the interval: ∫ b

a
f(x)dx− LN =

1

2
f ′(ξ)(b− a)h

Exercise 10 Consider the argument above carefully. Show that as N →∞
the values f ′(ξ) (remember the ξ can be different for each N) tend to the
average value of f ′(ξ), that is

f ′(ξ) → 1

b− a

∫ b

a
f ′(x)dx.

This property leads to the regular behaviour of the error as N → ∞ we saw
in the example of section 2.3.

3.4 Taylor Polynomials and Series

Higher order (n) polynomial approximation (Pn(x)) can also be used:

f(x) ≈ Pn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

Error formula

f(x)− Pn(x) = Rn(x) =
f (n+1)(ξ)

(n + 1)!
(x− a)n+1

where ξ is a point between a and x (that is not known).
In some cases, Pn(x) → f(x) as n →∞ for x in an interval around a. The

“infinite” order polynomial is called a Taylor Series. Some common series
are given below (based at a = 0, they can also be called McLaurin Series):

sin x = x− x3

6
+

x5

5!
− x7

7!
+ · · ·

cos x = 1− x2

2
+

x4

4!
− x6

6!
+ · · ·

ex = 1 + x +
x2

2
+

x3

6
+

x4

4!
+ · · ·

1

1− x
= 1 + x + x2 + x3 + · · · for |x| < 1

20

4 Interpolation

Suppose you have limited information about a function f(x). The function
(and possibly its derivatives) might be determined experimentally at certain
points. Perhaps f is an analytic function but difficult to compute values of.
Some values might be precomputed and stored in a look-up table. In either
case, you might want to know (as accurately as possible) the value of f at
values of x that are not where measurements were done, or in your look-up
table.

We will learn in this section how to approximate functions using polyno-
mials that agree with the data you have. The approximating polynomials will
be be accurate in a certain limited interval. You might wonder why polynomi-
als are always used. They are convenient to work with and easy to evaluate.
From the last section on Taylor polynomials, it is clear that polynomials can
approximate differentiable functions as accurately as desired.

If you have n pieces of data about the function (function or derivative
values at certain points) you can fit an n− 1 degree polynomial through the
data

c0 + c1x + c2x
2 + · · · cn−1x

n−1. (9)

In general, the coefficients c0, c1, · · · cn−1 are determined from the given data
by solving a linear system of equations. However, it some important cases,
finding the coefficients is more straight forward.

We have already seen a kind of interpolation in the last section on Taylor
Polynomials. If f(a) and f ′(a) are known (n = 2 pieces of data) we can fit a
first order (n− 1 = 1) polynomial to the data

f(x) ≈ f(a) + f ′(a)(x− a).

If f(a), f ′(a) and f ′′(a) are known (n = 3 pieces of data) we can fit a second
order (n− 1 = 2) polynomial to the data

f(x) ≈ f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2.

No linear solve is needed in this case. If it is important to get the approxi-
mating polynomial in the simpler form (9) we can expand the powers of x−a
to reach this form, as we did in Exercise 8.

21

a b

(a,f(a))

(b,(f(b))

c c

interpolation

extrapolation

Figure 7: Interpolation and Extrapolation

4.1 Linear Interpolation

Suppose you know the value of f(a) and f(b) (n = 2 data) and wanted to
estimate the value of f(c). If c is in [a, b] then this is called interpolation;
If c is outside [a, b] then this is called extrapolation. This is illustrated in
Figure 7. Since we have n = 2 data we can fit a linear polynomial to the
data. Graphically, this must be the line segment S(x) between (a, f(a)) and
(b, f(b)) as shown in Figure 8. Note that this is not the same idea as least
squares line fitting. Doing the algebra we get

f(x) ≈ S(x) = f(a) +
f(b)− f(a)

b− a
(x− a)

=
b− x

b− a
f(a) +

x− a

b− a
f(b).

Note that when a < x < b (interpolation), the linear approximation of f(x)
is a weighted average of the known values f(a) and f(b).

Exercise 11 Vapour saturation pressure Psat depends on temperature, Psat(T)
where Psat is in bar and T is in ◦C. Experimental values of Psat are found in
“steam tables”:

Psat(25) = 0.03168

Psat(30) = 0.04241

What is a good estimate of Psat(27)? Use linear interpolation.

22

a b

(a,f(a))

(b,(f(b))

c

f(x)

S(x)

Figure 8: Linear interpolation using S(x).

An error estimate is known for linear interpolation:

|f(x)− S(x)| ≤ h2

8
max

s∈[a,a+h]
|f ′′(s)|

where h = b−a, the distance between the data points. Extrapolation is much
less accurate. That the error can be larger as h gets larger or for functions
with large values of |f ′′| makes sense. The proof is an assignment question.
The use of the estimate is shown in the Example below.

Example 3 Say you knew from tables that

sin(0.9) = 0.7833

sin(1) = 0.8415

And you wanted to estimate sin(0.95). Use linear interpolation:

sin(0.95) ≈ 1

2
(sin(0.9) + sin(1)) = 0.8124

Exact sin(0.95) = 0.8134, error ≈ 0.0010. The error bound above is

0.12

8
sin(1) = 0.00105

23

4.2 Fancy Interpolation

If we knew the values of f(a− h), f(a), f(a + h) (n = 3 data) we could get
use a quadratic interpolation in [a− h, a + h].

Q(x) = c0 + c1x + c2x
2

Remember, the idea is that the coefficients are chosen so that Q(x) matches
the data.

Q(a− h) = c0 + c1(a− h) + c2(a− h)2 = f(a− h)

Q(a) = c0 + c1a + c2a
2 = f(a)

Q(a + h) = c0 + c1(a + h) + c2(a + h)2 = f(a + h)

This is a linear system for c0, c1 and c2! You can solve for the coefficients,
then use Q(x) to approximate f(x).

Exercise 12 Find the quadratic function Q(x) that matches the data f(−1) =
1, f(0) = 0, f(1) = 2. Use Q(x) to estimate f(1/2).

You can mix and match data of function values and derivatives at different
points as shown in the exercise below.

Exercise 13 Experimental measurements determine that a function f(x)
satisfies f(0) = 1, f ′(0) = 1, and f(1) = 3. Estimate f(1/2) using

(a) tangent line approximation.

(b) linear interpolation.

(c) a quadratic interpolation using all the information.

There is a way to avoid the linear system for the polynomial coefficients
(like is possible for Taylor Polynomials) using something called Lagrange
Interpolating Polynomials. You can learn about these in a more advanced
class on numerical methods, like Math 405. Another advanced technique of
interpolation is cubic splines, which is implemented in MATLAB.

24

4.3 Richardson Extrapolation

Here is an interesting application of extrapolation. Consider a numerical
method to compute approximate solutions to a problem. Suppose the number
A is the exact answer of the problem. Suppose the approximations depend on
an interval size h. Label by f(h) the approximation computed with step size
h. For the numerical integration methods, h can’t actually be any number,
it must be (b − a)/N where N is an integer (an even integer for Simpsons
Rule), but the idea below still works.

Suppose you know that the numerical method you are using is a conver-
gent method of order p, that is

f(h) ≈ A + Chp (10)

for h small and some constant C we do not know. Remember our idea to
compute f(h) and f(h/2) to see about how accurate our approximation is.
The idea of Richardson extrapolation is to use these two approximate values
and the known error behaviour (10) to get a more accurate approximation.
The algebra begins with

f(h) ≈ A + Chp

f(h/2) ≈ A + Chp/2p.

We want the value of A without the errors associated with C. To eliminate C,
multiply the second equation below by 2p and subtract the second equation
from the first to obtain

f(h)− 2pf(h/2) ≈ (1− 2p)A

or rewriting

A ≈ 2pf(h/2)− f(h)

2p − 1
. (11)

Equation (11) specifies Richardson Extrapolation of a numerical scheme of
order p. The resulting scheme is convergent and of order higher than p (so
converges to accurate answers with less work).

Exercise 14 Show that the Richardson Extrapolation of the Trapezoidal Rule
is Simpson’s Rule.

Exercise 15 Write the Richardson Extrapolation of Left Riemann Sums.
Identify the resulting scheme.

25

Figure 9: Graphical interpretation of the derivative as a tangent line slope.

5 Differentiation

The derivative of a function is given as

f ′(a) = lim
h→0

f(a + h)− f(a)

h
(12)

The graphical interpretation of the derivative is the tangent line slope as
shown in Figure 9. There are many applications of derivatives some of which
you saw last year: approximation, related rates, optimization (maximum and
minimum), and differential equations.

5.1 Euler Difference Formulas

Suppose you had some experimental values for a function f and wanted to
estimate the derivative of f . You might have an analytic function f in front
of you that was so complicated that finding its derivative analytically was
too much work. In either case, you would want to approximate the derivative
numerically. Considering the definition of the derivative in (12), a natural
idea is to use this expression with an h that is “small”. We want to think of
h as always positive and so have two cases:

Forward Euler Difference Approximation:

f ′(a) ≈ f(a + h)− f(a)

h
(13)

26

h FE FE error BE BE error
1/10 0.4974 0.0429 0.5814 -0.0411
1/20 0.5190 0.0213 0.5611 -0.0208
1/40 0.5297 0.0106 0.5508 -0.0105
1/80 0.5350 0.0053 0.5455 -0.0052
1/160 0.5377 0.0026 0.5429 -0.0026

Table 3: Errors in FE and BE approximation of d/dx sin x at x = 1

Backward Euler Difference Approximation:

f ′(a) ≈ f(a)− f(a− h)

h

Exercise 16 Approximate
d

dx
sin x

at x = 1 using h = 0.1 using FE and BE.

Consider again the approximation of

d

dx
sin x

at x = 1. (exact value cos 1 = 0.5403). Numerical results are shown in
Table 3. The results show clearly that both FE and BE are first order
accurate methods (they converge to the correct answer as h → 0 and the
error is approximately Ch). Notice also that the errors for BE are almost
equal in magnitude but opposite in sign to those of FE (this is generally true,
not just for this example).

We would have a much more accurate approximation of the derivative if
we averaged FE and BE (the error would approximately cancel).

f ′(a) ≈ 1

2

f(a + h)− f(a)

h
+

1

2

f(a)− f(a− h)

h
=

f(a + h)− f(a− h)

2h

this is known as the centred difference formula.
The error estimates for difference formulae are easy to work out using

Taylor Polynomials:

f ′(a)− f(a + h)− f(a)

h
= −1

2
hf ′′(ξ)

27

h FE error
10−4 4.2e-5
10−6 6.9e-7
10−8 2.3e-6
10−10 0.030

Table 4: Errors in FE approximation of d/dx sin x at x = 1 for h very small,
showing the effect of round off errors in floating point computations.

f ′(a)− f(a)− f(a− h)

h
=

1

2
hf ′′(ξ)

f ′(a)− f(a + h)− f(a− h)

2h
= −1

6
h2f (3)(ξ)

Exercise 17 Show the error expression for Forward Euler approximation,
the first expression in the list above.

Exercise 18 Show the error expression for centred differencing, the last ex-
pression in the list above.

Exercise 19 Knowing that centred differencing above is second order accu-
rate, use Richardson Extrapolation to make a higher order scheme for ap-
proximating the first derivative.

As a practical note, you can determine when difference approximations
have converged to a desired accuracy by successively halving h and looking
carefully at the resulting sequence of values.

5.2 Roundoff Errors and Noise

Consider using FE to approximate

d

dx
sin x = cos x

at x = 1 (exact value cos 1 = 0.5403) as before, but now take h to be very
small. The results are shown in Table 4. Note that for very small h, the
values are not at all accurate. This is not a problem with the computational
method (which can be proved to converge as h → 0) but with the use of
finite precision arithmetic in my mech2 calculator. The loss of precision

28

comes when two numbers of almost the same size are subtracted, as in the
computation of derivative approximations using FE, as can be seen from the
formula (13).

Numerical differentiation is also very sensitive to noise in experimental
data values. As a rule of thumb, interpolation and numerical integration are
not sensitive to floating point errors and less affected by noise.

5.3 Deriving Difference Formulas

Note that the formulas for FE, BE and centred differencing are all linear
combinations of the given function values, with coefficients that depend on
h. When you take these combinations, and use Taylor polynomial approxima-
tions for the function values, the biggest value that shows up is the derivative
and the next term (multiplied by h or h2) is the error. To derive a difference
formula, you take a linear combination of the known function values, expand
the values in Taylor polynomials, and match the coefficients by solving a
linear system. This is illustrated in an example below:

Example 4 Find an approximation formula for f ′′(a) when f(a), f(a− h)
and f(a + h) are known.

• Following the recipe above, we should look for an approximation of the
form

f ′′(a) ≈ c1f(a) + c2f(a + h) + c3f(a− h) (14)

with c1, c2 and c3 to be determined (they will depend on h but not values
of f).

• Expand f(a − h) and f(a + h) in Taylor Polynomials around the base
point a:

f(a + h) ≈ f(a) + f ′(a)h +
1

2
f ′′(a)h2

f(a− h) ≈ f(a)− f ′(a)h +
1

2
f ′′(a)h2.

• Put these in the form (14):

f ′′(a) ≈ c1f(a) + c2(f(a) + f ′(a)h +
1

2
f ′′(a)h2) +

c3(f(a)− f ′(a)h +
1

2
f ′′(a)h2)

29

• Reorganizing the LHS above we obtain

f ′′(a) ≈ (c1 + c2 + c3)f(a) + h(c2 − c3)f
′(a) +

h2

2
(c1 + c2)f

′′(a).

For this to be any good as an approximation, the LHS should have no
f(a) terms, no f ′(a) terms and exactly one f ′′(a) term:

c1 + c2 + c3 = 0

c2 − c3 = 0

c2 + c3 =
2

h2

• Recognize the system of equations above as a linear system. It has
solution c1 = −2/h2, c2 = c3 = 1/h2. Going back to (14) we see that

f ′′(a) ≈ f(a− h)− 2f(a) + f(a + h)

h2
.

This is known as the centred difference approximation of the second
derivative.

Exercise 20 Prove the centred difference approximation to the second deriva-
tive derived above is second order accurate.

Exercise 21 Find the second order formula for f ′(a) when f(a), f(a−h) and
f(a − 2h) are known. This is known as second order, one-sided (backward)
differencing.

6 Summary

In these notes (that correspond to the first four lectures of Mathematics in
Mech 221) you learned how to

• Numerically approximate function values, integrals and derivatives us-
ing only finite information about the function.

• Identify whether a method converges, and what order of accuracy it
has.

• Use Richardson extrapolation to get more accurate approximations.

30

Appendix: Proof of Rolle’s Theorem and the

Error Expression for Linear Approximation

See the handwritten pages that follow.

31

	mech221_math_notes
	mech221_math_notes_appendix

