
Mech 221: Computer Pre-Lab 3
Hand in the solutions to the two questions in the pre-lab at the beginning of
the lab.

In the upcoming lab, we will be focusing on the application of Newton’s
method in finding solutions to equations for which no simple algebraic so-
lution is available. As a final goal of the lab, we will use Newton’s method
to generate a plot of the solution to a separable differential equation. This
pre-lab will cover:

• New MATLAB commands: format, xlabel, ylabel and title.

• You will learn how to write a while loop in MATLAB that allows you
execute the same lines of code until a certain condition is met.

• You will see how to implement a function in MATLAB. This is a
special .m file that takes inputs and gives outputs.

• Using Newton’s method to find the solutions to an equation.

MATLAB commands to know for the lab

format long : This will increase the digits of a number shown in MATLAB from 5
to 15 digits. Type format short to return to 5 digits.

xlabel / ylabel : Typing in xlabel(’string’) will display the word string along the
x-axis in the current figure. ylabel(’string’) will do the same, but
along the y-axis.

title : Typing in title(’string’) will display the word string as a title
to the current figure.

While...end loops
Like for, while is not a simple command, but allows us to define “while

loops”. while loops are similar to for loops, but the condition for their
termination is different. A for loop is terminated when the specified number
of iterations has been reached. A while loop is terminated when a condition,
supplied by the programmer, is satisfied. A common example of use of a while
loop, and one we will require for this lab, is error tolerance. In MATLAB,
the structure of a while loop is as follows:

1

while(<condition>)

code to be executed

end

where <condition> is the Boolean variable (true/false) that will termi-
nate the loop when <condition> is “false”, and the code to be executed

are the commands that MATLAB will execute. When MATLAB reaches
the end of the code to be executed it will re-evaluate <condition>, and
terminate the loop if “false”. It is important that your condition will even-
tually fail. Otherwise your while loop may run forever. If it happens that the
while loop does not terminate after a long time, type Ctrl-C and MATLAB
will stop the loop.

Consider the following example while loop:

factor = 1;

while factor > 0.1

factor = factor/2

end

The statement in the while loop will be executed 4 times with factor dis-
playing successively the values 0.5000, 0.2500, 0.1250, 0.0625.

The while condition can involve the following operators

<,<= : less than, less than or equal

>,>= : greater than, greater than or equal

== : equal to (note the double equal sign to distinguish this from the
assignment operator)

∼= : not equal to

&, | : and, or

Function files
In MATLAB when you want to define a new function (beyond the built-in

functions like sin, cos, exp, etc.) you can write an .m file function. An .m
file function will accept input parameters and return output to you based on
the input. These .m files are different from the “script” .m files you have
seen before in that they accept input arguments and keep all variables local

2

to the function. We will be using the .m file functions to evaluate functions
of the form f(x, y) for this lab.

To create an .m file function, we first need to create a new .m file. Then
the first line of the file must be:

function output = funcname(input1,input2)

where output is your output variable, input1, input2 is your list of
input variables, and funcname is the name you choose for your function.
Note that the inputs and output can be vectors and you can specify only one
input or more than two inputs and more than one output if needed. After the
line above, you include all the lines of code you wish to see executed using
your input variables. Your output variables must be defined in this code.
You must save the .m file as “funcname.m” (the name of the file should
match the name of the function you define in it).

As an example, consider the .m file testfn.m in the current directory of
MATLAB that contains the lines of code

function f = testfn(x,y)

f = x*y^2;

If you type

z=testfn(1,2);

then z will have the value 4, computed by the function code with the values
x = 1 and y = 2 passed as inputs.

Newton’s Method
When it comes to finding the roots of equations, Newton’s method is a

useful tool to have on your side. First we will give you a brief explanation
as to how the method works, then we will give you some information about
the performance and limitations of the method.

First consider the following problem. We wish to calculate the root (or
roots) of a given function f(x). (i.e. We wish to find the value(s) x = x∗

such that f(x∗) = 0). How can we do this? First, choose a point near the
root. We will call it x0. Next, make a linear approximation to f(x) at the
point x = x0, giving us:

f(x) ≈ f(x0) + f ′(x0)(x− x0) = L(x) (1)

3

Now, we will find the root of the linear approximation. The idea behind
Newton’s Method is that since our initial guess was close to x∗, the root of
the linear approximation must be close to x∗ as well. We will now find the
root to the linear approximation and call it x1.

L(x1) = 0 = f(x0) + f ′(x0)(x1 − x0) (2)

→ x1 = x0 −
f(x0)

f ′(x0)
(3)

Now we have a better approximation x1 for the root. At this point you
may have noticed that we can apply this algorithm iteratively as the follow-
ing.

xn+1 = xn −
f(xn)

f ′(xn)
(4)

As n gets large we expect xn to approach the root, x∗. If this happens
then we say that xn converges to x∗. The strength of Newton’s Method is
that it can give very accurate answers with only a few iterations. We will
demonstrate this with the following example.

4

Example: Find the positive, real 6th root of π.
Although this can be found with our hand calculator directly, let’s
consider the answer to be the value x that is a root of the following
equation and apply Newton’s method.

f(x) = x6 − π = 0 (5)

Given that we are looking for the positive root, we will take an initial
guess of x0 = 2 (This is clearly a bad guess since 26 = 64 >> π, but in
this case it will not matter). We calculate f ′(x) = 6x5, and apply our
algorithm:

xn+1 = xn −
x6

n − π

6x5
n

x0 = 2

x1 = 2− 64− π

192
= 1.683029128

x2 = 1.441298261

x3 = 1.285265836

x4 = 1.220345924

x5 = 1.210411669

x5 = 1.210203332

x6 = 1.210203242

x7 = 1.210203242

From this we can say that π1/6 ≈ 1.210203242. (This calculation was
done with a calculator.)

The weakness of Newton’s method is that are situations where it will
fail (not converge to the desired root). For example, Newton’s method may
converge to a different root if your initial guess is not close enough. It is also
possible that the iterates will oscillate between values that are not roots, or
tend to infinity in absolute value (blow up).

5

Assessing the Convergence of Newton’s Method
If Newton’s Method converges, then the iterates tend to a root and the

values of
|xn − xn−1|

tend to zero. If Newton’s Method fails then the quantity above almost always
stays large. As a Rule of Thumb, for problems that are well-scaled, if

|xn − xn−1| < ε (6)

then |xn − x∗| < ε. That is if the difference between successive iterates
satisfies a desired small tolerance then the approximation to that root also
satisfies that tolerance. Iterating until (6) is reached can be done with a
while loop. Two further, more rigorous checks can be done

1. If xn is your final iterate, f(xn) should be approximately zero. This is
an important check when debugging your method.

2. If it is very important that xn be accurate to the root x∗ to tolerance
ε, compute f(xn + ε) and f(xn − ε). If these values have opposite
signs then by the Intermediate Value Theorem, there must be a root
of f within the desired tolerance from xn. Draw a picture to convince
yourself of this result.

Question 1: Solving a Differential Equation
Consider the following initial value problem:

dy

dx
=

2x

yey

(
1 +

1

(x2 + 1)

)
, y(0) = 1 (7)

• Solve this initial value problem. Hint: This differential equation is
separable). You will be able to separate variables, integrate both sides
and solve for the integration constant C using the initial condition.
This gives a solution in an implicit form

G(y) = F (x) + C or G(y)− F (x)− C = 0

with C determined. Hand in this solution (Show all your work).

6

You are unlikely to be able to solve the DE above fully, that is to find
an explicit solution (an analytic solution in the form y(x)). It is possible for
this problem although the solution involves the Lambert-W function. This
is where Newton’s method comes in handy. We can use Newton’s method to
find the solution y(x) at any given value x. This can be done for all x values
on a grid and so a plot of the solution can be generated.

Question 2: Application of Newton’s Method

• Recall your solution for the initial value problem in Question #1. We
want to find y(1) for this solution to high accuracy. Set x = 1 in your
implicit formula from Question #1, then rewrite the relationship that
y = y(1) must satisfy in the form q(y) = 0.

• Write the formula for Newton iterations to get increasingly accurate
approximations of y.

• Calculate an accurate approximation to y at x = 1, using Newton’s
Method with the formula derived above until you have 5 significant
digits in your approximate answer. Take your initial guess to be y0 =
1.8. Show carefully that your approximation of y(1) has 5 significant
digits, using the bracketing argument described above.

• Hand in the function q(y) you found above, the formula you find for
the Newton iterates to this problem, list the iterates yn you obtain and
show your reasoning that your answer is correct to 5 significant figures.

Coming up in Lab #3
Completing the pre-lab will prepare you for the lab, in which the following

will be covered:

• Debugging MATLAB program code.

• Writing function .m files in MATLAB.

• Finding solutions to separable differential equations using Newton’s
Method in MATLAB. It is important to understand the steps leading
to the solution of a separable differential equation with this technique.

• Significant MATLAB coding will be required.

7

