
Mech 221: Computer Pre-Lab 2
Hand in the solutions to the two questions in the pre-lab at the beginning of
the lab.

The upcoming lab concerns the numerical approximation of differential
equations using the Forward Euler method. This pre-lab will cover:

• Introduction to the new MATLAB commands: hold, and plot options.
These commands will allow you to put several plots on the same graph
and give you ways to have them displayed differently.

• Further MATLAB commands to generate vectors: zeros and the colon
command.

• MATLAB commands that act on vectors: length, max and abs.

• You will be introduced to the MATLAB for loop and see some exam-
ples. This is the main new computational element needed in the code
to approximate differential equations.

• A description of the Forward Euler time-stepping method you will im-
plement.

MATLAB commands to know for the lab

Plotting commands:

hold on : This command will allow to you to plot multiple sets of data within
the same figure, rather than plotting only the last data-set requested.
The command hold off will turn this feature off.

plot(x,y,options) : To improve the appearance of plots, there are several options that
MATLAB has available. You can change colour, data point markers,
line style, etc. The basic options can be implemented as follows:

>> plot(x,y,’[colour][linestyle][marker]’,’linewidth’,[n]

colour : Specifies the colour of the line. Some options are b,r,k, or g,
corresponding to blue, red, black or green respectively.

1

linestyle : Specifies the style of the line you wish to plot. -,-- or (blank

space) are common examples corresponding to solid, dashed, or
no line respectively. (Note: the no line option will only work if
you specify a marker)

marker : Specifies the data marker at each point in your figure. (blank
space) ,* or o are some examples that correspond to no markers,
asterisks, and circles.

n : Specifies the thickness of the line being plotted (1 is the default).

– Note that you can choose to specify only some of these values. If
unspecified, they turn to default values.

examples : >> plot(x,y,’ro’); will plot x and y as a series of red circles,
unconnected by a line.
>> plot(x,y,’b--’,’linewidth’,3); will plot x and y as a
thick, blue, dashed line.

Commands to generate row vectors:

zeros(1,12): Creates a row vector with 12 entries, all with value zero.

1:4 Creates a row vector with entries 1 2 3 4. The first entry is the start
value, the last the end value of the list.

2:2:8 The middle argument of this command is an increment. This command
generates the row vector with entries 2 4 6 8.

Commands that operate on vectors:

length(x) : Will return the number of elements in the vector x.

max(x): Will return the maximum value in the vector x.

abs(x): Will return a vector with the absolute value of every entry in x.

If the vector y has the exact values of a function and yapprox has values
computed with a numerical method, then max(abs(y-yapprox)) will give
the maximum error of the approximation.

For...end loops

A loop (a repeated list of commands) can be made with the for and end

commands. The structure is as follows:

2

for i = x

Other commands here, possibly many lines

end

where x is a row vector (often of integers but this is not necessary). MATLAB
will execute the commands between the for and end commands with i having
the value of the first entry in x. Then, the commands will be executed again
with i having the value of the second entry in x and so on. In total, the lines
of code between the for and the end will be executed a number of times
equal to the number of entries of x.

The code

I = 0;

for i = x

I = I + i;

end

gives the same result as sum(x). The code

N=100;

x = zeros(1,N);

h = 1/(N-1);

for i = 1:N

x(i) = (i-1)*h;

end

gives the same result as x = linspace(0,1,100). Note that when generat-
ing a vector using a for loop, it is a good idea to set the size of the vector
before the loop starts using a zeros command as done above.

Question 1: A Differential Equation

Consider the following differential equation problem for y(t):

dy

dt
= −y + 1

with initial condition y(0) = 0. This could model a series RL circuit, with
y being the current in the circuit. These models will be developed in your
electrical engineering lectures.

3

Using techniques that you will learn in the mathematics lectures, you will
know to look for a solution to the problem above in the form

y(t) = Ce−t + a

where C and a are constants to be determined. Put this form into the
differential equation and initial condition to determine a and C.

Hand in your analytic solution to the problem above with your working

Question 2: Programming the Forward Euler Method

The Forward Euler method is a simple numerical method used for ap-
proximating differential equations. The Forward Euler method (or simply
Euler’s Method) is also discussed in your text in section 2.10.

Given a differential equation, initial condition and domain of interest:

dy(t)

dt
= f(y(t), t), y(a) = y0, a ≤ t ≤ b

The Forward Euler method generates approximate values of y at a discrete
set of t points on a grid: a = t0 ≤ t1 ≤ ≤ tN = b. As with numerical
integration, the spacing between these N + 1 time points is h = (b − a)/N .
Computed values yi will approximate the exact solution y(ti). The initial
condition gives y0 exactly.

The idea of the Forward Euler method is to use known values of y and t
and step forward in time, allowing us to approximate what the value of y is
at time t+h. In other words, we use yi−1, ti−1 to solve for yi. We then repeat
this process until we reach the end of our interval, tN = b. Specifically, the
scheme is

yi = yi−1 + h · f(yi−1, ti−1)

with the first value y0 known from the initial condition. Using a for loop,
this “forward-stepping” procedure can be continued until you have reached
the final time tN = b.

• Consider the algorithm above with a = 0, b = 1 , N = 4, f(y(t), t) =
−y + 1 and y(0) = 1. The differential equation problem is the same as
in Question #1 above.

• hand-write the MATLAB code required to use the Forward Euler method
to approximate the solution to that problem on the 4 sub-intervals.

4

• Hand in that hand-written code.

Coming up in Lab #2
Completing the pre-lab will prepare you for the lab, in which the following

will be covered:

• Writing the Forward Euler method in the form of a .m file. It is im-
portant to do a careful job on pre-lab Question #2 so you are ready to
write your code.

• Using this .m file to approximate solutions to the differential equation
problem in the pre-lab.

• Comparing the numerical approximations to the exact solution on plots
and by calculating errors.

• Modifying your code to approximate a different differential equation.

5

